En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Improved cap constructions, and sets without arithmetic progressions

Bookmarks Report an error
Virtualconference
Authors : Elsholtz, Christian (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A cap is a point set in affine or projective space without any three points on any line. We will discuss the current state of
the art, and give an exponential improvement for the size of caps of AG(n, p), which one can think of as (Z/pZ)^n, and PG(n,p). For certain primes, 5,11,17,23,29 and 41, we improve the asymptotic growth of these caps, for example, when p=23 from (8.091...)^n to (9-o(1))^n, as n tends to infinity.

Keywords : caps; sets without arithmetic progressions in affine or projective space

MSC Codes :
05B25 - Finite geometries, See also {51D20, 51Exx}
51E20 - Combinatorial structures in finite projective spaces, See also {05Bxx}
51E22 - Linear codes and caps in Galois spaces, See also {94B05}

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 01/12/2020
    Conference Date : 24/11/2020
    Subseries : Research talks
    arXiv category : Combinatorics ; Number Theory
    Mathematical Area(s) : Number Theory ; Combinatorics ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:53
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-11-24_Elshotz.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Event Organizers : Rivat, Joël ; Tichy, Robert
Dates : 23/11/2020 - 27/11/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2256.html

Citation Data

DOI : 10.24350/CIRM.V.19692603
Cite this video as: Elsholtz, Christian (2020). Improved cap constructions, and sets without arithmetic progressions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19692603
URI : http://dx.doi.org/10.24350/CIRM.V.19692603

See Also

Bibliography



Bookmarks Report an error