En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Hamiltonian reduction for affine Grassmannian slices

Bookmarks Report an error
Virtualconference
Authors : Kamnitzer, Joel (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a representation V of a reductive group G, Braverman-Finkelberg-Nakajima defined a Poisson variety called the Coulomb branch, using a convolution algebra construction. This variety comes with a natural deformation quantization, called a Coulomb branch algebra. Important cases of these Coulomb branches are (generalized) affine Grassmannian slices, and their quantizations are truncated shifted Yangians.
Motivated by the geometric Satake correspondence and the theory of symplectic duality/3d mirror symmetry, we expect a categorical g-action on modules for these truncated shifted Yangians. I will explain three results in this direction. First, we have an indirect realization of this action, using equivalences with KLRW-modules. Second, we have a geometric relation between these generalized slices by Hamiltonian reduction. Finally, we have an algebraic version of this Hamiltonian reduction which we are able to relate to the first realization.

Keywords : representation theory; affine Grassmannian; truncated shifted Yangians; Coulomb branches

MSC Codes :

Additional resources :
https://www.cirm-math.fr/RepOrga/2221/Slides/Kamnitzer-slides.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 11/01/2021
    Conference Date : 14/12/2020
    Subseries : Research talks
    arXiv category : Representation Theory ; Algebraic Geometry ; Quantum Algebra ; Rings and Algebras
    Mathematical Area(s) : Algebra ; Lie Theory and Generalizations
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:54
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-12-14_Kamnitzer.mp4

Information on the Event

Event Title : Quantum Groups and Cohomology Theory of Quiver and Flag Varieties / Groupes quantiques et théories cohomologiques des variétés de drapeaux et variétés carquois
Event Organizers : Leclerc, Bernard ; Mihalcea, Leonardo ; Perrin, Nicolas ; Varagnolo, Michela
Dates : 14/12/2020 - 18/12/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2221.html

Citation Data

DOI : 10.24350/CIRM.V.19693203
Cite this video as: Kamnitzer, Joel (2020). Hamiltonian reduction for affine Grassmannian slices. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19693203
URI : http://dx.doi.org/10.24350/CIRM.V.19693203

See Also

Bibliography



Bookmarks Report an error