En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A De Giorgi argument for $L^{\infty}$ solution to the Boltzmann equation without angular cutoff

Bookmarks Report an error
Virtualconference
Authors : Yang, Tong (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk, after reviewing the work on global well-posedness of the Boltzmann equation without angular cutoff with algebraic decay tails, we will present a recent work on the global weighted $L^{\infty}$-solutions to the Boltzmann equation without angular cutoff in the regime close to equilibrium. A De Giorgi type argument, well developed for diffusion equations, is crafted in this kinetic context with the help of the averaging lemma. More specifically, we use a strong averaging lemma to obtain suitable $L^{p}$ estimates for level-set functions. These estimates are crucial for constructing an appropriate energy functional to carry out the De Giorgi argument. Then we extend local solutions to global by using the spectral gap of the linearized Boltzmann operator with the convergence to the equilibrium state obtained as a byproduct. This result fill in the gap of well-posedness theory for the Boltzmann equation without angular cutoff in the $L^{\infty}$ framework. The talk is based on the joint works with Ricardo Alonso, Yoshinori Morimoto and Weiran Sun.

Keywords : Boltzmann equation; De Giorgi argument; non-angular cutoff

MSC Codes :
35Q35 - PDEs in connection with fluid mechanics
47H20 - Semigroups of nonlinear operators and nonlinear evolution equations, See also {58D07}
76P05 - Rarefied gas flows, Boltzmann equation, See also {82B40, 82C40, 82D05}

Additional resources :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Tong_YANG.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/04/2021
    Conference Date : 23/03/2021
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:38:38
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-23_Yang.mp4

Information on the Event

Event Title : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Event Organizers : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Event Year : 2021
Event URL : https://www.chairejeanmorlet.com/2355.html

Citation Data

DOI : 10.24350/CIRM.V.19735803
Cite this video as: Yang, Tong (2021). A De Giorgi argument for $L^{\infty}$ solution to the Boltzmann equation without angular cutoff. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19735803
URI : http://dx.doi.org/10.24350/CIRM.V.19735803

See Also

Bibliography

  • ALONSO, R., MORIMOTO, Y., SUN, W., et al. De Giorgi argument for weighted $ L^ 2\cap L^\infty $ solutions to the non-cutoff Boltzmann equation. arXiv preprint arXiv:2010.10065, 2020. - https://arxiv.org/abs/2010.10065



Bookmarks Report an error