Authors : Shu, Chi-Wang (Author of the conference)
CIRM (Publisher )
Abstract :
When designing high order schemes for solving time-dependent kinetic and related PDEs, we often first develop semi-discrete schemes paying attention only to spatial discretizations and leaving time $t$ continuous. It is then important to have a high order time discretization to main the stability properties of the semi-discrete schemes. In this talk we discuss two classes of high order time discretization, i.e, the strong stability preserving (SSP) time discretization, which preserves strong stability from a stable spatial discretization with Euler forward, and the explicit Runge-Kutta methods, for which strong stability can be proved in many cases for semi-negative linear semi-discrete schemes. Numerical examples will be given to demonstrate the performance of these schemes.
Keywords : time discretization; strong stability; Runge-Kutta; multistep methods
MSC Codes :
65L06
- Multistep, Runge-Kutta and extrapolation methods
65M20
- Method of lines
Film maker : Hennenfent, Guillaume
Language : English
Available date : 15/07/2021
Conference Date : 11/05/2021
Subseries : Research talks
arXiv category : Numerical Analysis
Mathematical Area(s) : Numerical Analysis & Scientific Computing
Format : MP4 (.mp4) - HD
Video Time : 00:33:59
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2021-05-11_Shu.mp4
|
Event Title : Jean-Morlet Chair 2021- Workshop - Numerical Methods for Kinetic Equations (NumKin2021) / Chaire Jean-Morlet 2021 - Workshop - Méthodes numériques pour les équations cinétiques Event Organizers : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel Dates : 14/06/2021 - 18/06/2021
Event Year : 2021
Event URL : https://www.chairejeanmorlet.com/2356.html
DOI : 10.24350/CIRM.V.19755603
Cite this video as:
Shu, Chi-Wang (2021). Stability of time discretizations for semi-discrete high order schemes for kinetic and related PDEs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19755603
URI : http://dx.doi.org/10.24350/CIRM.V.19755603
|
Bibliography
- SUN, Zheng et SHU, Chi-wang. Strong stability of explicit Runge--Kutta time discretizations. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 3, p. 1158-1182. - https://arxiv.org/abs/1811.10680
- XU, Yuan, ZHANG, Qiang, SHU, Chi-wang, et al. The L ^2-norm Stability Analysis of Runge--Kutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 4, p. 1574-1601. - https://doi.org/10.1137/18M1230700