En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Coupling rare event algorithms and deep neural network to predict extreme heat waves

Bookmarks Report an error
Multi angle
Authors : Bouchet, Freddy (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Extreme events are of primarily importance for understanding the impact of climate change. However, because they are too rare and realistic models are too complex, traditional deep neural networks are inefficient for predictions. We cope with this lack of data using rare event simulations. From the best climate models, we oversample extremely rare events and obtain several hundreds more events than with usual climate runs, at a fixed numerical cost. Coupled with deep neural networks this approach improves drastically the prediction of extreme heat waves.

MSC Codes :
00A79 - Physics (use more specific entries from Sections 70 through 86 when possible)
60F10 - Large deviations
68T01 - General
70K99 - None of the above but in this section
86A10 - Meteorology and atmospheric physics

Additional resources :
https://www.cirm-math.fr/RepOrga/2389/Slides/Bouchet.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/11/2021
    Conference Date : 27/09/2021
    Subseries : Research talks
    arXiv category : Statistical Mechanics ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:50:12
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-09-27_Bouchet.mp4

Information on the Event

Event Title : On Future Synergies for Stochastic and Learning Algorithms / Sur les synergies futures autour des algorithmes d'apprentissage et stochastiques
Event Organizers : Durmus, Alain ; Michel, Manon ; Roberts, Gareth ; Zdeborova, Lenka
Dates : 27/09/2021 - 01/10/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2389.html

Citation Data

DOI : 10.24350/CIRM.V.19817403
Cite this video as: Bouchet, Freddy (2021). Coupling rare event algorithms and deep neural network to predict extreme heat waves. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19817403
URI : http://dx.doi.org/10.24350/CIRM.V.19817403

See Also

Bibliography

  • RAGONE, Francesco, WOUTERS, Jeroen, et BOUCHET, Freddy. Computation of extreme heat waves in climate models using a large deviation algorithm. Proceedings of the National Academy of Sciences, 2018, vol. 115, no 1, p. 24-29. - https://doi.org/10.1073/pnas.1712645115

  • LUCENTE, Dario, ROLLAND, Joran, HERBERT, Corentin, et al. Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain. arXiv preprint arXiv:2110.05050, 2021. - https://arxiv.org/abs/2110.05050

  • JACQUES-DUMAS, Valérian, RAGONE, Francesco, BORGNAT, Pierre, et al. Deep Learning-based Extreme Heatwave Forecast. arXiv preprint arXiv:2103.09743, 2021. - https://arxiv.org/abs/2103.09743



Bookmarks Report an error