En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Enhancing sampling with learned transport maps

Bookmarks Report an error
Multi angle
Authors : Gabrié, Marylou (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Deep generative models parametrize very flexible families of distributions able to fit complicated datasets of images or text. These models provide independent samples from complex high-distributions at negligible costs. On the other hand, sampling exactly a target distribution, such as Boltzmann distributions and Bayesian posteriors is typically challenging: either because of dimensionality, multi-modality, ill-conditioning or a combination of the previous. In this talk, I will review recent works trying to enhance traditional inference and sampling algorithms with learning. I will present in particular flowMC, an adaptive MCMC with Normalizing Flows along with first applications and remaining challenges.

Keywords : generative models; sampling; MCMC

MSC Codes :
62F15 - Bayesian inference
68T99 - None of the above but in this section
82B80 - Numerical methods in equilibrium statistical mechanics

Additional resources :
https://cloud.enpc.fr/s/kz6NipeHBDQ7X8K

    Information on the Video

    Film maker : Petit, Jean
    Language : English
    Available date : 14/04/2023
    Conference Date : 03/04/2023
    Subseries : Research talks
    arXiv category : Machine Learning
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:38:41
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-04-03_gabrie.mp4

Information on the Event

Event Title : Analysis and simulations of metastable systems / Analyse et simulation de systèmes métastables
Event Organizers : Landim, Claudio ; Lelièvre, Tony ; Bianchi, Alessandra
Dates : 03/04/2023 - 07/04/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2742.html

Citation Data

DOI : 10.24350/CIRM.V.20027903
Cite this video as: Gabrié, Marylou (2023). Enhancing sampling with learned transport maps. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20027903
URI : http://dx.doi.org/10.24350/CIRM.V.20027903

See Also

Bibliography



Bookmarks Report an error