En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Cluster algebras and the amplituhedron - definition

Bookmarks Report an error
Multi angle
Authors : Williams, Lauren K. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will give an introduction to the amplituhedron, a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in the context of scattering amplitudes in N=4 super Yang Mills theory. I will focus in particular on its connections to cluster algebras, including the cluster adjacency conjecture. (Based on joint works with multiple coauthors, especially Evan-Zohar, Lakrec, Parisi, Sherman-Bennett, and Tessler.)

Keywords : cluster algebras; Grassmannians; amplituhedron

MSC Codes :
05Exx - Algebraic combinatorics
14M15 - Grassmannians, Schubert varieties, flag manifolds
13F60 - Cluster algebras

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 20/12/2023
    Conference Date : 27/11/2023
    Subseries : Research talks
    arXiv category : Combinatorics
    Mathematical Area(s) : Algebra ; Combinatorics ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 01:00:46
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-11-27_Williams.mp4

Information on the Event

Event Title : Current trends in representation theory, cluster algebras and geometry / Théorie des représentations, algèbres amassées et géométrie
Event Organizers : Amiot, Claire ; Brüstle, Thomas ; Palu, Yann ; Plamondon, Pierre-Guy
Dates : 27/11/2023 - 01/12/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2875.html

Citation Data

DOI : 10.24350/CIRM.V.20116303
Cite this video as: Williams, Lauren K. (2023). Cluster algebras and the amplituhedron - definition. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20116303
URI : http://dx.doi.org/10.24350/CIRM.V.20116303

See Also

Bibliography

  • ARKANI-HAMED, Nima et TRNKA, Jaroslav. The amplituhedron. Journal of High Energy Physics, 2014, vol. 2014, no 10, p. 1-33. - https://arxiv.org/abs/1312.2007

  • FOMIN, S., WILLIAMS, L., et ZELEVINSKY, A. Introduction to cluster algebras. chapters 1-3, preprint (2016). arXiv preprint arXiv:1608.05735, 2016. - https://arxiv.org/abs/1608.05735

  • PARISI, Matteo, SHERMAN-BENNETT, Melissa, et WILLIAMS, Lauren. The m= 2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers. arXiv preprint arXiv:2104.08254, 2021. - https://arxiv.org/abs/2104.08254

  • WILLIAMS, Lauren K. The positive Grassmannian, the amplituhedron, and cluster algebras. arXiv preprint arXiv:2110.10856, 2021. - https://arxiv.org/abs/2110.10856

  • EVEN-ZOHAR, Chaim, LAKREC, Tsviqa, PARISI, Matteo, et al. Cluster algebras and Tilings for the m= 4 amplituhedron. arXiv preprint arXiv:2310.17727, 2023. - https://arxiv.org/abs/2310.17727



Imagette Video

Bookmarks Report an error