Authors : Esposito, Chiara (Author of the conference)
CIRM (Publisher )
Abstract :
In this talk, we discuss the reduction-quantization diagram in terms of formality. First, we propose a reduction scheme for multivector fields and multidifferential operators, phrased in terms of L-infinity morphisms. This requires the introduction of equivariant multivector fields and equivariant multidifferential operator complexes, which encode the information of the Hamiltonian action, i.e., a G-invariant Poisson structure allowing for a momentum map. As a second step, we discuss an equivariant version of the formality theorem, conjecturedby Tsygan and recently solved in a joint work with Nest, Schnitzer, and Tsygan. This result has immediate consequences in deformation quantization, since it allows for obtaining a quantum moment map from a classical momentum map with respect to a G-invariant Poisson structure.
Keywords : Formality; reduction
MSC Codes :
16E45
- Differential graded algebras and applications
53D20
- Momentum maps; symplectic reduction
53D55
- Deformation quantization, star products
Film maker : Hennenfent, Guillaume
Language : English
Available date : 29/05/2024
Conference Date : 09/05/2024
Subseries : Research talks
arXiv category : Quantum Algebra
Mathematical Area(s) : Geometry ; Mathematical Physics
Format : MP4 (.mp4) - HD
Video Time : 01:08:30
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2024-05-09_Esposito.mp4
|
Event Title : Higher Algebra, Geometry, and Topology / Algèbre, Géométrie et Topologie Supérieures Event Organizers : Campos, Ricardo ; Cirici, Joana ; Dotsenko, Vladimir ; Vallette, Bruno Dates : 06/05/2024 - 10/05/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2995.html
DOI : 10.24350/CIRM.V.20173903
Cite this video as:
Esposito, Chiara (2024). Equivariant formality and reduction. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20173903
URI : http://dx.doi.org/10.24350/CIRM.V.20173903
|
See Also
Bibliography
- ESPOSITO, Chiara, KRAFT, Andreas, et SCHNITZER, Jonas. The strong homotopy structure of BRST reduction. Pacific Journal of Mathematics, 2023, vol. 325, no 1, p. 47-83. - https://doi.org/10.2140/pjm.2023.325.47
- ESPOSITO, Chiara, KRAFT, Andreas, et SCHNITZER, Jonas. The strong homotopy structure of Poisson reduction. Journal of Noncommutative Geometry, 2022, vol. 16, no 3. - https://doi.org/10.4171/JNCG/455