En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Strong convergence for tensor GUE random matrices

Bookmarks Report an error
Multi angle
Authors : Yuan, Wangjun (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Haagerup and Thorbjørnsen proved that iid GUEs converge strongly to free semicircular elements as the dimension grows to infinity. Motivated by considerations from quantum physics -- in particular, understanding nearest neighbor interactions in quantum spin systems -- we consider iid GUE acting on multipartite state spaces, with a mixing component on two sites and identity on the remaining sites. We show that under proper assumptions on the dimension of the sites, strong asymptotic freeness still holds. Our proof relies on an interpolation technology recently introduced by Bandeidra, Boedihardjo and van Handel. This is a joint work with Benoît Collins.

Keywords : gaussian unitary ensemble; strong asymptotic freeness; tensor

MSC Codes :
47A80 - Tensor products of operators, See also {46M05}
60B20 - Random matrices (probabilistic aspects)
15B52 - Random matrices

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/07/2024
    Conference Date : 08/07/2024
    Subseries : Research School
    arXiv category : Probability ; Operator Algebras
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:39:23
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-07-08_yuan.mp4

Information on the Event

Event Title : Jean Morlet Chair - Research school: Random quantum channels: entanglement and entropies / Chaire Jean Morlet - Ecole: Canaux quantiques aléatoires: Intrication et entropies
Event Organizers : Collins, Benoît ; Demni, Nizar ; Kadri, Hachem ; Lancien, Cécilia ; Nechita, Ion ; Pellegrini, Clément
Dates : 08/07/2024 - 12/07/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3051.html

Citation Data

DOI : 10.24350/CIRM.V.20200603
Cite this video as: Yuan, Wangjun (2024). Strong convergence for tensor GUE random matrices. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20200603
URI : http://dx.doi.org/10.24350/CIRM.V.20200603

See Also

Bibliography

  • BANDEIRA, Afonso S., BOEDIHARDJO, March T., et VAN HANDEL, Ramon. Matrix concentration inequalities and free probability. Inventiones mathematicae, 2023, vol. 234, no 1, p. 419-487. - https://doi.org/10.1007/s00222-023-01204-6

  • HAAGERUP, Uffe et THORBJØRNSEN, Steen. A new application of random matrices: $\text{Ext}(C_{\text{red}}^{\ast}(F_{2}))$ is not a group. Annals of Mathematics, 2005, p. 711-775. - https://www.jstor.org/stable/20159928



Imagette Video

Bookmarks Report an error