En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$P$-adic cohomology of the Lubin-Tate tower

Sélection Signaler une erreur
Multi angle
Auteurs : Scholze, Peter (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : We prove a finiteness result on the $p$-adic cohomology of the Lubin-Tate tower, which allows one to go from mod $p$ and $p$-adic
$GL_n (F)$-representations to Galois representations (compatibly with some global cor-respondences).

Codes MSC :
14F30 - $p$-adic cohomology, crystalline cohomology
14G22 - Rigid analytic geometry
22E50 - Representations of Lie and linear algebraic groups over local fields

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 22/08/14
    Date de Captation : 02/07/14
    Collection : The Fields Medallists
    Sous Collection : Research talks
    Catégorie arXiv : Algebraic Geometry ; Number Theory
    Domaine(s) : Algèbre ; Théorie des Nombres
    Format : MP4 (.mp4) - HD
    Durée : 00:55:20
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2014-07-02_Scholze.mp4

Informations sur la Rencontre

Nom de la Rencontre : Arithmetics of Shimura varieties, of automorphic forms and applications / Arithmétique des variétés de Shimura et des formes automorphes et applications
Organisateurs de la Rencontre : Dat, Jean-François ; Fargues, Laurent ; Tilouine, Jacques
Dates : 30/06/2014 - 04/07/2014
Année de la rencontre : 2014

Données de citation

DOI : 10.24350/CIRM.V.18580303
Citer cette vidéo: Scholze, Peter (2014). $P$-adic cohomology of the Lubin-Tate tower. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18580303
URI : http://dx.doi.org/10.24350/CIRM.V.18580303

Bibliographie



Sélection Signaler une erreur