https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Commutative algebra for Artin approximation - Part 1
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Commutative algebra for Artin approximation - Part 1

Sélection Signaler une erreur
Post-edited
Auteurs : Hauser, Herwig (Auteur de la conférence)
CIRM (Editeur )

Loading the player...
approximation classical Artin approximation Néron desingularization commutative rings power series $m$-adic topology solution varieties convergent power series Banach space inductive limit topology Weierstrass division theorem

Résumé : In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach spaces), and give a conceptual proof of the Weierstrass division theorem.
Lecture two covers smooth, unramified and étale morphisms between noetherian rings. The relation of these notions with the concepts of submersion, immersion and diffeomorphism from differential geometry is given.
In the third lecture, we investigate ring extensions between the three power series rings and describe the respective flatness properties. This allows us to prove approximation in the linear case.
The last lecture is devoted to the geometry of solution sets in power series spaces. We construct in the case of one $x$-variable an isomorphism of an $m$-adic neighborhood of a solution with the cartesian product of a (singular) scheme of finite type with an (infinite dimensional) smooth space, thus extending the factorization theorem of Grinberg-Kazhdan-Drinfeld.
CIRM - Chaire Jean-Morlet 2015 - Aix-Marseille Université

Codes MSC :
13J05 - Power series rings [See also 13F25]

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 08/02/15
    Date de Captation : 26/01/15
    Collection : Exposés de recherche
    Sous Collection : Research School
    Catégorie arXiv : Commutative Algebra ; Algebraic Geometry
    Domaine(s) : Algèbre ; Géométrie Complexe & géométrie Algébrique
    Format : QuickTime (.mov) Durée : 01:23:54
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2015-01-26_Hauser_part1.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet Chair - Doctoral school : Introduction to Artin approximation and the geometry of power series
Organisateurs de la Rencontre : Hauser, Herwig ; Rond, Guillaume
Dates : 26/01/15 - 30/01/15
Année de la rencontre : 2015
URL de la Rencontre : https://www.chairejeanmorlet.com/1254.html

Données de citation

DOI : 10.24350/CIRM.V.18681103
Citer cette vidéo: Hauser, Herwig (2015). Commutative algebra for Artin approximation - Part 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18681103
URI : http://dx.doi.org/10.24350/CIRM.V.18681103

Voir Aussi

Bibliographie



Sélection Signaler une erreur