En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Towards reproducibility and transparency in mathematical and computational epidemiology

Sélection Signaler une erreur
Multi angle
Auteurs : Frost, Simon (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Mathematical models of infectious disease transmission are increasingly used to guide public health and policy decisions. Hence, it is important that every effort is made to ensure that models are ‘correct', made difficult by the frequent need to simulate a model numerically. The best we can do in most cases is to be able to replicate a model i.e. generate the same results from the same inputs (model plus parameters), or failing that, reproduce results that are similar. This can be achieved by sharing the computer code, and/or providing a sufficiently detailed description of the model. I will illustrate that it is often difficult to replicate or reproduce results of modeling publications, using case studies that highlight some of the many causes of this failure. I will argue that the FAIR principles proposed for data – that they should be Findable, Accessible, Interoperable and Reusable – are equally valid for modeling studies, and go a long way towards ensuring reproducibility. I will present Epirecipes (http://epirecip.es) a FAIR platform that both allows models to be replicated exactly, while fostering the idea that a wide variety of approaches are needed to ensure the robustness of model results. The added value from this platform includes resources for teaching, acting as a ‘Rosetta Stone' - allowing models from one computer language to be ported to another, and as a repository of best practices, potential pitfalls, and technical tricks that are all too often tucked away in papers or textbooks. As quoted from ‘The Turing Way' (https://the-turing-way.netlify.com), a handbook for reproducible science, reproducing models of infectious disease should be ‘too easy not to do'.

Codes MSC :
97D40 - Teaching methods and classroom techniques - Lesson preparation - Euducational principles
97B10 - Educational research and planning
97M60 - Biology, chemistry, medicine

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 03/03/2020
    Date de Captation : 21/02/2020
    Sous Collection : Research talks
    Catégorie arXiv : Quantitative Biology ; Dynamical Systems
    Domaine(s) : Combinatoires ; Systèmes Dynamiques & EDO ; Enseignement & Vulgarisation
    Format : MP4 (.mp4) - HD
    Durée : 00:45:29
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2020-02-20_Frost.mp4

Informations sur la Rencontre

Nom de la Rencontre : Thematic Month Week 3: Mathematical Modeling and Statistical Analysis of Infectious Disease Outbreaks / Mois thématique Semaine 3 : Modélisation mathématique et analyses statistique des épidémies de maladies infectieuses
Organisateurs de la Rencontre : Britton, Tom ; Forien, Raphaël ; Hubert, Florence ; Pardoux, Etienne
Dates : 17/02/2020 - 21/02/2020
Année de la rencontre : 2020
URL de la Rencontre : https://conferences.cirm-math.fr/2303.html

Données de citation

DOI : 10.24350/CIRM.V.19612203
Citer cette vidéo: Frost, Simon (2020). Towards reproducibility and transparency in mathematical and computational epidemiology. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19612203
URI : http://dx.doi.org/10.24350/CIRM.V.19612203

Voir Aussi

Bibliographie

  • KEELING, Matt J. et ROHANI, Pejman. Modeling infectious diseases in humans and animals. Princeton University Press, 2011. -

  • VYNNYCKY, Emilia et WHITE, Richard. An introduction to infectious disease modelling. OUP oxford, 2010. -

  • KISS, István Z., MILLER, Joel C., SIMON, Péter L., et al. Mathematics of epidemics on networks. Cham: Springer, 2017, vol. 598. - http://dx.doi.org/10.1007/978-3-319-50806-1

  • LI, Michael Y. An introduction to mathematical modeling of infectious diseases. Cham : Springer, 2018. - http://dx.doi.org/10.1007/978-3-319-72122-4

  • BJØRNSTAD, Ottar N. Epidemics: models and data using R. Springer, 2018. - http://dx.doi.org/10.1007/978-3-319-97487-3



Sélection Signaler une erreur