Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.
Mots-Clés : Quasi-action; quasi-isometry; almost normal; hyperbolic
Codes MSC :
20E08
- Groups acting on trees
20F65
- Geometric group theory
20J05
- Homological methods in group theory
57M07
- Topological methods in group theory
Ressources complémentaires :
https://conferences.cirm-math.fr/uploads/1/6/6/4/16648158/pres.pdf
|
Informations sur la Rencontre
Nom de la Rencontre : Virtual Geometric Group Theory conference / Rencontre virtuelle en géométrie des groupes Dates : 01/06/2020 - 05/06/2020
Année de la rencontre : 2020
URL de la Rencontre : https://conferences.cirm-math.fr/virtual...
DOI : 10.24350/CIRM.V.19636503
Citer cette vidéo:
(2020). Quasi-actions and almost normal subgroups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19636503
URI : http://dx.doi.org/10.24350/CIRM.V.19636503
|
Voir Aussi
Bibliographie
- KAPOVICH, Michael, KLEINER, Bruce, et LEEB, Bernhard. Quasi-isometries and the de Rham decomposition. Topology, 1998, vol. 37, no 6, p. 1193-1211. - https://doi.org/10.1016/S0040-9383(97)00091-8
- MOSHER, Lee, SAGEEV, Michah, et WHYTE, Kevin. Quasi-actions on trees I. Bounded valence. Annals of mathematics, 2003, p. 115-164. - https://www.jstor.org/stable/3597155
- MARGOLIS, Alexander. The geometry of groups containing almost normal subgroups. arXiv preprint arXiv:1905.03062, 2019. - https://arxiv.org/abs/1905.03062
- MARGOLIS, Alexander. Discretisable quasi-actions. in preparation (2020) -