En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Quasi-actions and almost normal subgroups

Sélection Signaler une erreur
Virtualconference
Auteurs : ... (Auteur de la conférence)
... (Editeur )

Loading the player...

Résumé : If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.

Mots-Clés : Quasi-action; quasi-isometry; almost normal; hyperbolic

Codes MSC :
20E08 - Groups acting on trees
20F65 - Geometric group theory
20J05 - Homological methods in group theory
57M07 - Topological methods in group theory

Ressources complémentaires :
https://conferences.cirm-math.fr/uploads/1/6/6/4/16648158/pres.pdf

    Informations sur la Vidéo

    Langue : Anglais
    Date de Publication : 01/06/2020
    Date de Captation : 27/05/2020
    Sous Collection : Research talks
    Catégorie arXiv : Geometric Topology ; Group Theory
    Domaine(s) : Géométrie ; Topologie
    Format : MP4 (.mp4) - HD
    Durée : 00:33:48
    Audience : Chercheurs ; Grand Public
    Download : https://videos.cirm-math.fr/2020-05-27_Margolis.mp4

Informations sur la Rencontre

Nom de la Rencontre : Virtual Geometric Group Theory conference / Rencontre virtuelle en géométrie des groupes
Dates : 01/06/2020 - 05/06/2020
Année de la rencontre : 2020
URL de la Rencontre : https://conferences.cirm-math.fr/virtual...

Données de citation

DOI : 10.24350/CIRM.V.19636503
Citer cette vidéo: (2020). Quasi-actions and almost normal subgroups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19636503
URI : http://dx.doi.org/10.24350/CIRM.V.19636503

Voir Aussi

Bibliographie

  • KAPOVICH, Michael, KLEINER, Bruce, et LEEB, Bernhard. Quasi-isometries and the de Rham decomposition. Topology, 1998, vol. 37, no 6, p. 1193-1211. - https://doi.org/10.1016/S0040-9383(97)00091-8

  • MOSHER, Lee, SAGEEV, Michah, et WHYTE, Kevin. Quasi-actions on trees I. Bounded valence. Annals of mathematics, 2003, p. 115-164. - https://www.jstor.org/stable/3597155

  • MARGOLIS, Alexander. The geometry of groups containing almost normal subgroups. arXiv preprint arXiv:1905.03062, 2019. - https://arxiv.org/abs/1905.03062

  • MARGOLIS, Alexander. Discretisable quasi-actions. in preparation (2020) -



Sélection Signaler une erreur