En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

High-dimensional classification by sparse logistic regression

Sélection Signaler une erreur
Virtualconference
Auteurs : Abramovich, Felix (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this talk we consider high-dimensional classification. We discuss first high-dimensional binary classification by sparse logistic regression, propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. Implementation of any complexity penalty-based criterion, however, requires a combinatorial search over all possible models. To find a model selection procedure computationally feasible for high-dimensional data, we consider logistic Lasso and Slope classifiers and show that they also achieve the optimal rate. We extend further the proposed approach to multiclass classification by sparse multinomial logistic regression.

This is joint work with Vadim Grinshtein and Tomer Levy.

Mots-Clés : Complexity penalty; convex relaxation; feature selection; high-dimensionality; minimaxity; misclassification excess risk; sparsity

Codes MSC :
62C20 - Minimax procedures
62H30 - Classification and discrimination; cluster analysis

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2146/Slides/ABRAMOVICH_Talk.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 15/06/2020
    Date de Captation : 03/06/2020
    Sous Collection : Research talks
    Catégorie arXiv : Statistics Theory ; Machine Learning ; Methodology
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:39:06
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2020-06-03_Abramovitch.mp4

Informations sur la Rencontre

Nom de la Rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Organisateurs de la Rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL de la Rencontre : https://www.cirm-math.com/cirm-virtual-...

Données de citation

DOI : 10.24350/CIRM.V.19640203
Citer cette vidéo: Abramovich, Felix (2020). High-dimensional classification by sparse logistic regression. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19640203
URI : http://dx.doi.org/10.24350/CIRM.V.19640203

Voir Aussi

Bibliographie

  • ABRAMOVICH, Felix, GRINSHTEIN, Vadim, et LEVY, Tomer. Multiclass classification by sparse multinomial logistic regression. arXiv preprint arXiv:2003.01951, 2020. - https://arxiv.org/abs/2003.01951

  • ABRAMOVICH, Felix et GRINSHTEIN, Vadim. High-dimensional classification by sparse logistic regression. IEEE Transactions on Information Theory, 2018, vol. 65, no 5, p. 3068-3079. - https://doi.org/10.1109/TIT.2018.2884963

  • ALQUIER, Pierre, COTTET, Vincent, LECUÉ, Guillaume, et al. Estimation bounds and sharp oracle inequalities of regularized procedures with Lipschitz loss functions. The Annals of Statistics, 2019, vol. 47, no 4, p. 2117-2144. - http://dx.doi.org/10.1214/18-AOS1742

  • BARTLETT, Peter L., JORDAN, Michael I., et MCAULIFFE, Jon D. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 2006, vol. 101, no 473, p. 138-156. - https://www.jstor.org/stable/30047445

  • BELLEC, Pierre C., LECUÉ, Guillaume, TSYBAKOV, Alexandre B., et al. Slope meets lasso: improved oracle bounds and optimality. The Annals of Statistics, 2018, vol. 46, no 6B, p. 3603-3642. - http://dx.doi.org/10.1214/17-AOS1670

  • DANIELY, Amit, SABATO, Sivan, BEN-DAVID, Shai, et al. Multiclass learnability and the erm principle. The Journal of Machine Learning Research, 2015, vol. 16, no 1, p. 2377-2404. - http://jmlr.org/papers/volume16/daniely15a/daniely15a.pdf



Sélection Signaler une erreur