En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stability of time discretizations for semi-discrete high order schemes for kinetic and related PDEs

Sélection Signaler une erreur
Virtualconference
Auteurs : Shu, Chi-Wang (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : When designing high order schemes for solving time-dependent kinetic and related PDEs, we often first develop semi-discrete schemes paying attention only to spatial discretizations and leaving time $t$ continuous. It is then important to have a high order time discretization to main the stability properties of the semi-discrete schemes. In this talk we discuss two classes of high order time discretization, i.e, the strong stability preserving (SSP) time discretization, which preserves strong stability from a stable spatial discretization with Euler forward, and the explicit Runge-Kutta methods, for which strong stability can be proved in many cases for semi-negative linear semi-discrete schemes. Numerical examples will be given to demonstrate the performance of these schemes.

Mots-Clés : time discretization; strong stability; Runge-Kutta; multistep methods

Codes MSC :
65L06 - Multistep, Runge-Kutta and extrapolation methods
65M20 - Method of lines

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 15/07/2021
    Date de Captation : 11/05/2021
    Sous Collection : Research talks
    Catégorie arXiv : Numerical Analysis
    Domaine(s) : Analyse Numérique & Calcul Formel
    Format : MP4 (.mp4) - HD
    Durée : 00:33:59
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-05-11_Shu.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet Chair 2021- Workshop - Numerical Methods for Kinetic Equations (NumKin2021) / Chaire Jean-Morlet 2021 - Workshop - Méthodes numériques pour les équations cinétiques
Organisateurs de la Rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel
Dates : 14/06/2021 - 18/06/2021
Année de la rencontre : 2021
URL de la Rencontre : https://www.chairejeanmorlet.com/2356.html

Données de citation

DOI : 10.24350/CIRM.V.19755603
Citer cette vidéo: Shu, Chi-Wang (2021). Stability of time discretizations for semi-discrete high order schemes for kinetic and related PDEs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19755603
URI : http://dx.doi.org/10.24350/CIRM.V.19755603

Bibliographie

  • SUN, Zheng et SHU, Chi-wang. Strong stability of explicit Runge--Kutta time discretizations. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 3, p. 1158-1182. - https://arxiv.org/abs/1811.10680

  • XU, Yuan, ZHANG, Qiang, SHU, Chi-wang, et al. The L ^2-norm Stability Analysis of Runge--Kutta Discontinuous Galerkin Methods for Linear Hyperbolic Equations. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 4, p. 1574-1601. - https://doi.org/10.1137/18M1230700



Imagette Video

Sélection Signaler une erreur