Auteurs : Drach, Kostiantyn (Auteur de la conférence)
CIRM (Editeur )
Résumé :
The concept of a complex box mapping (or puzzle mapping) is a generalization of the classical notion of polynomial-like map to the case when one allows for countably many components in the domain and finitely many components in the range of the mapping. In one-dimensional dynamics, box mappings appear naturally as first return maps to certain nice sets, and hence one arrives at a notion of box renormalization. We say that a rational map is box renormalizable if the first return map to a well-chosen neighborhood of the set of critical points (intersecting the Julia set) has a structure of a box mapping. In our talk, we will discuss various features of general box mappings, as well as so-called dynamically natural box mappings, focusing on their rigidity properties. We will then show how these results can be used almost as 'black boxes' to conclude similar rigidity properties for box renormalizable rational maps. We will give several examples to illustrate this procedure, these examples include, most prominently, complex polynomials of arbitrary degree and their Newton maps. (The talk is based on joint work with Trevor Clark, Oleg Kozlovski, Dierk Schleicher and Sebastian van Strien.)
Mots-Clés : Box mapping; puzzle map; renormalization; rigidity; local connectivity
Codes MSC :
37F10
- Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F31
- Quasiconformal methods in holomorphic dynamics; quasiconformal dynamics
37F46
- Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets
|
Informations sur la Rencontre
Nom de la Rencontre : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe Organisateurs de la Rencontre : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk Dates : 20/09/2021 - 24/09/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2546.html
DOI : 10.24350/CIRM.V.19811903
Citer cette vidéo:
Drach, Kostiantyn (2021). Box renormalization as a 'black box'. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19811903
URI : http://dx.doi.org/10.24350/CIRM.V.19811903
|
Voir Aussi
-
[Virtualconference]
Renormalization in complex dynamics
/ Auteur de la conférence Shishikura, Mitsuhiro.
-
[Multi angle]
Characterizing Thurston maps by lifting trees
/ Auteur de la conférence Winarski, Rebecca.
-
[Multi angle]
Docile transcendental entire functions
/ Auteur de la conférence Waterman, James.
-
[Virtualconference]
Characterizing rational maps positively using graphs
/ Auteur de la conférence Thurston, Dylan.
-
[Multi angle]
Transcendental Thurston Theory for entire functions and compositions
/ Auteur de la conférence Shemyakov, Sergey.
-
[Multi angle]
Iterated monodromy groups and transcendental dynamics
/ Auteur de la conférence Reinke, Bernhard.
-
[Multi angle]
A dynamical homeomorphism between the Mandelbrot set $M$ and the parabolic Mandelbrot set $M_{1}$
/ Auteur de la conférence Petersen, Carsten Lunde.
-
[Virtualconference]
Entire functions with Cantor bouquet Julia sets
/ Auteur de la conférence Pardo-Simon, Leticia.
-
[Multi angle]
Contracting self-similar groups and conformal dimension
/ Auteur de la conférence Nekrashevych, Volodymyr.
-
[Virtualconference]
Interbreeding in conformal dynamics, and its applications near and far
/ Auteur de la conférence Mukherjee, Sabyasachi.
-
[Multi angle]
Wandering lakes of Wada
/ Auteur de la conférence Martí-Pete, David.
-
[Multi angle]
Story of the Feigenbaum point
/ Auteur de la conférence Lyubich, Mikhail.
-
[Multi angle]
Transcendental Julia sets of minimal Hausdorff dimension
/ Auteur de la conférence Lazebnik, Kirill.
-
[Multi angle]
Introduction to Thurston's theorems
/ Auteur de la conférence Hubbard, John H..
-
[Multi angle]
Decomposition results in rational dynamics
/ Auteur de la conférence Hlushchanka, Mikhail.
-
[Multi angle]
Meromorphic maps of finite type: parameter space
/ Auteur de la conférence Fagella, Nuria.
-
[Multi angle]
Hyperbolicity of renormalization for bi-cubic circle maps with bounded combinatorics
/ Auteur de la conférence Estevez Jacinto, Gabriela Alexandra.
-
[Virtualconference]
Near-degenerate regime in neutral renormalization
/ Auteur de la conférence Dudko, Dzmitry.
-
[Virtualconference]
Arithmetic geometric models for the renormalisation of irrationally indifferent attractors
/ Auteur de la conférence Cheraghi, Davoud.
-
[Virtualconference]
Tips of tongues in the double standard family
/ Auteur de la conférence Buff, Xavier.
-
[Multi angle]
Eremenko's conjecture, Devaney's hairs, and the growth of counterexamples
/ Auteur de la conférence Brown, Andrew.
-
[Virtualconference]
The visual sphere of an expanding Thurston map
/ Auteur de la conférence Bonk, Mario.
-
[Multi angle]
Transcendental dynamics and infinite-dimensional Thurston theory
/ Auteur de la conférence Bogdanov, Konstantin.
-
[Virtualconference]
Transcendental functions with small singular sets
/ Auteur de la conférence Bishop, Christopher.
-
[Multi angle]
Polynomial versus transcendental dynamics
/ Auteur de la conférence Benini, Anna Miriam.
-
[Multi angle]
Quadratic polynomials
/ Auteur de la conférence Bartholdi, Laurent.
Bibliographie
- CLARK, Trevor, DRACH, Kostiantyn, KOZLOVSKI, Oleg, et al. The dynamics of complex box mappings. arXiv preprint arXiv:2105.08654, 2021. - https://arxiv.org/abs/2105.08654
- DRACH, Kostiantyn et SCHLEICHER, Dierk. Rigidity of Newton dynamics. arXiv preprint arXiv:1812.11919, 2018. - https://arxiv.org/abs/1812.11919v2
- DRACH, Kostiantyn, LODGE, Russell, SCHLEICHER, Dierk, et al. Puzzles and the Fatou–Shishikura injection for rational Newton maps. Transactions of the American Mathematical Society, 2021, vol. 374, no 4, p. 2753-2784. - https://doi.org/10.1090/tran/8273
- DRACH, Kostiantyn, MIKULICH, Yauhen, RÜCKERT, Johannes, et al. A combinatorial classification of postcritically fixed Newton maps. Ergodic Theory and Dynamical Systems, 2019, vol. 39, no 11, p. 2983-3014. - https://doi.org/10.1017/etds.2018.2