En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Algebraic curves with many rational points over finite fields

Sélection Signaler une erreur
Multi angle
Auteurs : Montanucci, Maria (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Algebraic curves over a finite field $\mathbb{F}_{q}$ and their function fields have been a source of great fascination for number theorists and geometers alike, ever since the seminal work of Hasse and Weil in the 1930s and 1940s. Many important and fruitful ideas have arisen out of this area, where number theory and algebraic geometry meet. For a long time, the study of algebraic curves and their function fields was the province of pure mathematicians. But then, in a series of three papers in the period 1977-1982, Goppa found important applications of algebraic curves over finite fields to coding theory. The key point of Goppa's construction is that the code parameters are essentially expressed in terms of arithmetic and geometric features of the curve, such as the number $N_{q}$ of $\mathbb{F}_{q}$-rational points and the genus $g$. Goppa codes with good parameters are constructed from curves with large $N_{q}$ with respect to their genus $g$. Given a smooth projective, algebraic curve of genus $g$ over $\mathbb{F}_{q}$, an upper bound for $N_{q}$ is a corollary to the celebrated Hasse-Weil Theorem,$$N_{q} \leq q+1+2 g \sqrt{q} .$$Curves attaining this bound are called $\mathbb{F}_{q}$-maximal. The Hermitian curve $\mathcal{H}$, that is, the plane projective curve with equation$$X^{\sqrt{q}+1}+Y^{\sqrt{q}+1}+Z^{\sqrt{q}+1}=0,$$is a key example of an $\mathbb{F}_{q}$-maximal curve, as it is the unique curve, up to isomorphism, attaining the maximum possible genus $\sqrt{q}(\sqrt{q}-1) / 2$ of an $\mathbb{F}_{q^{-}}$ maximal curve. Other important examples of maximal curves are the Suzuki and the Ree curves. It is a result commonly attributed to Serre that any curve which is $\mathbb{F}_{q}$-covered by an $\mathbb{F}_{q}$-maximal curve is still $\mathbb{F}_{q}$-maximal. In particular, quotient curves of $\mathbb{F}_{q}$-maximal curves are $\mathbb{F}_{q}$-maximal. Many examples of $\mathbb{F}_{q}$-maximal curves have been constructed as quotient curves $\mathcal{X} / G$ of the Hermitian/Ree/Suzuki curve $\mathcal{X}$ under the action of subgroups $G$ of the full automorphism group of $\mathcal{X}$. It is a challenging problem to construct maximal curves that cannot be obtained in this way for some $G$. In this talk, we will describe our main contributions to both the theory of maximal curves over finite fields and to applications of algebraic curves with many points in coding theory. In particular, the following three topics will be discussed:
1. Construction of maximal curves
2. Weierstrass semigroups and points on maximal curves;
3. Algebraic curves with many rational points and coding theory.

Codes MSC :
11G20 - Curves over finite and local fields
14H25 - Arithmetic ground fields, See also {11Dxx,11G05,14Gxx}

    Informations sur la Vidéo

    Réalisateur : Petit, Jean
    Langue : Anglais
    Date de Publication : 06/03/2023
    Date de Captation : 13/02/2023
    Sous Collection : Research talks
    Catégorie arXiv : Algebraic Geometry ; Number Theory
    Domaine(s) : Géométrie Complexe & géométrie Algébrique ; Théorie des Nombres
    Format : MP4 (.mp4) - HD
    Durée : 00:48:35
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-02-13_Montanucci.mp4

Informations sur la Rencontre

Nom de la Rencontre : COGNAC
Organisateurs de la Rencontre : Aubry, Yves ; Ballet, Stéphane ; Cardinali, Ilaria ; Gorla, Elisa
Dates : 13/02/2023 - 17/02/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2803.html

Données de citation

DOI : 10.24350/CIRM.V.20001603
Citer cette vidéo: Montanucci, Maria (2023). Algebraic curves with many rational points over finite fields. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20001603
URI : http://dx.doi.org/10.24350/CIRM.V.20001603

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur