En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Wasserstein gradient flows and applications to sampling in machine learning - lecture 2

Sélection Signaler une erreur
Multi angle
Auteurs : Korba, Anna (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Sampling is a fundamental task in Machine Learning. For instance in Bayesian Machine Learning, one has to sample from the posterior distribution over the parameters of a learning model, whose density is known up to a normalizing constant. In other settings such as generative modelling, one has to sample from a distribution from which some samples are available (e.g. images). The task of sampling can be seen as an optimization problem over the space of probability measures. The mathematical theory providing the tools and concepts for optimization over the space of probability measures is the theory of optimal transport. The topic of this course will be the connection between optimization and sampling, more precisely, how to solve sampling problems using optimization ideas. The goal of the first part of the course will be to present two important concepts from optimal transport: Wasserstein gradient flows and geodesic convexity. We will introduce them by analogy with their euclidean counterpart that is well known in optimization. The goal of the second part will be to show how these concepts, along with standard optimization techniques, enable to design, improve and analyze various sampling algorithms. In particular. we will focus on several interacting particles schemes that achieve state-of-the-art performance in machine learning.

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 22/07/2024
    Date de Captation : 28/06/2024
    Sous Collection : Research School
    Catégorie arXiv : Machine Learning ; Computer Science
    Domaine(s) : Informatique
    Format : MP4 (.mp4) - HD
    Durée : 00:42:38
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-06-28_Korba_2.mp4

Informations sur la Rencontre

Nom de la Rencontre : Research School - Jean Morlet Chair - Frontiers in Interacting Particle Systems, Aggregation-Diffusion Equations & Collective Behavior / Ecole - Chaire Jean Morlet - Frontières dans les équations de systèmes de particules en interaction. Equations d'agrégation-diffusion et comportement collectif
Organisateurs de la Rencontre : Carrillo, José Antonio ; Nouri, Anne
Dates : 24/06/2024 - 28/06/2024
Année de la rencontre : 2024
URL de la Rencontre : https://conferences.cirm-math.fr/3050.html

Données de citation

DOI : 10.24350/CIRM.V.20194503
Citer cette vidéo: Korba, Anna (2024). Wasserstein gradient flows and applications to sampling in machine learning - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20194503
URI : http://dx.doi.org/10.24350/CIRM.V.20194503

Voir Aussi

Bibliographie



Sélection Signaler une erreur