https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Modelling of magnetic fusion plasmas: from fluid to kinetic description: kinetic MHD
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Modelling of magnetic fusion plasmas: from fluid to kinetic description: kinetic MHD

Sélection Signaler une erreur
Post-edited
Auteurs : Garbet, Xavier (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
kinetic versus fluid descriptions MHD description kinetic description gyrokinetics two fluid MHD Ohm's law momentum equation GyroFluid GyroLandauFluid hybrid code reduced MHD internal kink modes in tokamaks reconection sawteeth ELMs fishbones six dimensional hybrid code questions of the audience

Résumé : This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise several difficulties, including inconsistent ordering and choice of representation. The non linear dynamics of an internal kink mode in a tokamak will be used as a test bed for the various formulations. It will be shown that bi-fluid effects can explain to some extent fast plasma relaxations (reconnection), but cannot address kinetic instabilities due to energetic particles. Some results of hybrid codes will be shown. Recent developments and perspectives will be given in conclusion.

Codes MSC :
76W05 - Magnetohydrodynamics and electrohydrodynamics
82D10 - Plasmas

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/08/14
    Date de captation : 16/07/14
    Sous collection : Research talks
    arXiv category : Physics
    Domaine : Mathematical Physics
    Format : QuickTime (.mov) Durée : 01:35:03
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-07-23_Garbet.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS : Numerical modeling of plasmas / CEMRACS : Modèles numériques des plasmas
Organisateurs de la rencontre : Campos Pinto, Martin ; Charles, Frédérique ; Guillard, Hervé ; Nkonga, Boniface
Dates : 21/07/14 - 29/08/14
Année de la rencontre : 2014
URL Congrès : http://smai.emath.fr/cemracs/cemracs14/

Données de citation

DOI : 10.24350/CIRM.V.18539303
Citer cette vidéo: Garbet, Xavier (2014). Modelling of magnetic fusion plasmas: from fluid to kinetic description: kinetic MHD. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18539303
URI : http://dx.doi.org/10.24350/CIRM.V.18539303

Bibliographie

  • Biskamp, D. Nonlinear magnetohydrodynamics. Cambridge Monographs on Plasma Physics, 1. Cambridge University Press, Cambridge, 1993. xiv+378 pp. ISBN: 0-521-40206-9 - http://www.ams.org/mathscinet-getitem?mr=1250152

  • Priest, E., Forbes, T. Magnetic reconnection. MHD theory and applications. Cambridge University Press, Cambridge, 2000. xii+600 pp. ISBN: 0-521-48179-1 - https://www.zbmath.org/?q=an:0959.76002

  • Braginskii, S. I. Transport Processes in a Plasma. Reviews of Plasma Physics, 1. Consultants Bureau, New York, 205 pp. -

  • Grandgirard, V. and Sarazin, Y. Numerical methods for magnetic confinement fusion, CEMRACS 2010 Publications -

  • Hazeltine, R.D. and Meiss, J.D Shear-Alfvén dynamics of toroidally confined plasmas. Physics Reports, vol. 121 (1985), no. 1-2, pp. 1-164 - http://dx.doi.org/10.1016/0370-1573(85)90083-3

  • Hammett, G.W. and Perkins, F.W. Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. Physical Review Letters, vol. 64 (1990), no. 25, pp. 3019-3022 - http://dx.doi.org/10.1103/physrevlett.64.3019

  • Goswami, P., Passot, T. and Sulem, P. L. A Landau fluid model for warm collisionless plasmas. Physics of Plasmas, vol. 12 (2005), no. 10, p. 102109 - http://dx.doi.org/10.1063/1.2096582

  • Sarazin, Y., Dif-Pradalier, G., Zarzoso, D., Garbet, X., Ghendrih, Ph., Grandgirard, V. Entropy production and collisionless fluid closure, Plasma Physics and Controlled Fusion, vol. 51 (2009), no. 11, p. 115003 - http://dx.doi.org/10.1088/0741-3335/51/11/115003

  • Park, W., Parker, S., Biglari, H., Chance, M., Chen, L., Cheng, C. Z., Hahm, T. S. , Lee, W. W., Kulsrud, R., Monticello, D., Sugiyama, L., White, R. Three-dimensional hybrid gyrokinetic-magnetohydrodynamics simulation, Physics of Fluids B: Plasma Physics, vol. 4 (1992), no. 7, p. 2033 - http://dx.doi.org/10.1063/1.860011

  • Briguglio, S., Zonca, F., Vlad, G. Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfvén modes in tokamaks, Physics of Plasmas, vol. 5 (1998), no. 9, p. 3287 - http://dx.doi.org/10.1063/1.872997

  • Lütjens, H., Luciani, J.F. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas, Journal of Computational Physics, vol. 227 (2008), no. 14, pp. 6944-6966 - http://dx.doi.org/10.1016/j.jcp.2008.04.003



Sélection Signaler une erreur