https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Towards complex and realistic tokamaks geometries in computational plasma physics
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Towards complex and realistic tokamaks geometries in computational plasma physics

Sélection Signaler une erreur
Post-edited
Auteurs : Ratnani, Ahmed (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
edge localised modes (ELMs) MHD simulation (JOREK) computer aided design (CAD) isogeometric analysis (IGA) splines h-p-k-refinement k-refinement flux aligned meshes ITER tokamak WEST tokamak r-refinement Monge-Kantorovich problem Monge-Ampère equation geometric multigrid two-grid method for nonlinear PDE equidistribution - adaptative anisotropic mapping

Résumé :
Codes MSC :
65D07 - Splines (numerical methods)
65D17 - Computer aided design (modeling of curves and surfaces)
65N50 - Mesh generation and refinement
82D10 - Plasmas
35K96 - Parabolic Monge-Ampère equations

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 22/08/14
    Date de captation : 14/08/14
    Sous collection : Research talks
    arXiv category : Numerical Analysis ; Computer Science
    Domaine : Numerical Analysis & Scientific Computing ; Mathematical Physics
    Format : QuickTime (.mov) Durée : 00:55:30
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-08-14_Ratnani.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS : Numerical modeling of plasmas / CEMRACS : Modèles numériques des plasmas
Organisateurs de la rencontre : Campos Pinto, Martin ; Charles, Frédérique ; Guillard, Hervé ; Nkonga, Boniface
Dates : 21/07/14 - 29/08/14
Année de la rencontre : 2014
URL Congrès : http://smai.emath.fr/cemracs/cemracs14/

Données de citation

DOI : 10.24350/CIRM.V.18556703
Citer cette vidéo: Ratnani, Ahmed (2014). Towards complex and realistic tokamaks geometries in computational plasma physics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18556703
URI : http://dx.doi.org/10.24350/CIRM.V.18556703

Bibliographie

  • Ratnani, A. et al. Gasus : Python for IsoGeometric Analysis simulations in Plasmas Physics. (In preparation) -

  • Ratnani, A. et al. Alignement and equidistribution for two-dimensional grid adaptation using B-splines. (In preparation) -

  • Ratnani, A. et al. Application of the IsoGeometric mesh adaptation for solving the Anistropic Diffusion problem. (In preparation) -

  • Baines, M.J. Least squares and approximate equidistribution in multidimensions. Numerical Methods for Partial Dierential Equations, vol. 15 (1999), no. 5, pp. 605-615 - http://dx.doi.org/10.1002/(sici)1098-2426(199909)15:5<605::aid-num7>3.0.co;2-9

  • Benamou, J.D., Froese, B. D. and Oberman, A. M. Two numerical methods for the elliptic monge-ampère equation. ESAIM : Mathematical Modelling and Numerical Analysis, vol. 44 (2010), no. 4, pp. 737-758 - http://dx.doi.org/10.1051/m2an/2010017

  • Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, vol. 44 (1991), no. 4, pp. 375-417 - http://dx.doi.org/10.1002/cpa.3160440402

  • Budd, C.J., Cullen, M.J.P. and Walsh, E.J. Monge-ampère based moving mesh methods for numerical weather prediction, with applications to the eady problem. Journal of Computational Physics, vol. 236 (2013), pp. 247-270 - http://dx.doi.org/10.1016/j.jcp.2012.11.014

  • Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y. and Lapenta, G. An optimal robust equidistribution method for two-dimensional grid adaptation based on monge-kantorovich optimization. Journal of Computational Physics, vol. 227 (2008), no. 23, pp. 9841-9864 - http://dx.doi.org/10.1016/j.jcp.2008.07.020

  • Fasshauer, G.E. and Schumaker, Larry L. Minimal energy surfaces using parametric splines. Computer Aided Geometric Design, vol. 13 (1996), no. 1, pp. 45-79 - http://dx.doi.org/10.1016/0167-8396(95)00006-2

  • Floater, M.S. and Hormann, K. Surface parameterization : a tutorial and survey. In Dodgson, N.A. (ed.) et al., Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Berlin, Springer, 2005, pp. 157-186. ISBN 3-540-21462-3 - http://dx.doi.org/10.1007/3-540-26808-1_9

  • Huang, W. and Russell, R.D. Adaptive moving mesh methods. Applied mathematical sciences, 174. New York, Springer, 2011. xvii, 432 p. ISBN 978-1-4419-7915-5 - http://dx.doi.org/10.1007/978-1-4419-7916-2



Sélection Signaler une erreur