En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Adaptive low-rank approximations for stochastic and parametric equations: a subspace point of view

Sélection Signaler une erreur
Multi angle
Auteurs : Nouy, Anthony (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Tensor methods have emerged as an indispensable tool for the numerical solution of high-dimensional problems in computational science, and in particular problems arising in stochastic and parametric analyses. In many practical situations, the approximation of functions of multiple parameters (or random variables) is made computationally tractable by using low-rank tensor formats. Here, we present some results on rank-structured approximations and we discuss the connection between best approximation problems in tree-based low-rank formats and the problem of finding optimal low-dimensional subspaces for the projection of a tensor. Then, we present constructive algorithms that adopt a subspace point of view for the computation of sub-optimal low-rank approximations with respect to a given norm. These algorithms are based on the construction of sequences of suboptimal but nested subspaces.

Keywords: high dimensional problems - tensor numerical methods - projection-based model order reduction - low-rank tensor formats - greedy algorithms - proper generalized decomposition - uncertainty quantification - parametric equations

Codes MSC :
15A69 - Multilinear algebra, tensor products
35J50 - Variational methods for elliptic systems
41A15 - Spline approximation
41A46 - Approximation by arbitrary nonlinear expressions; widths and entropy
41A63 - Multidimensional problems (should also be assigned at least one other classification number in this section)
46A32 - Spaces of linear operators; topological tensor products; approximation properties [See also 46B28, 46M05, 47L05, 47L20]
46B28 - Spaces of operators; tensor products; approximation properties [See also 46A32, 46M05, 47L05, 47L20]
65D15 - Algorithms for functional approximation
65N12 - Stability and convergence of numerical methods (BVP of PDE)

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 27/11/14
    Date de captation : 19/11/14
    Sous collection : Research talks
    arXiv category : Numerical Analysis ; Functional Analysis ; Machine Learning
    Domaine : Numerical Analysis & Scientific Computing ; PDE ; Mathematics in Science & Technology ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:07:43
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-11-19_Nouy.mp4

Informations sur la Rencontre

Nom de la rencontre : MoMaS Conference / Colloque MoMaS
Organisateurs de la rencontre : Allaire, Grégoire ; Cances, Clément ; Ern, Alexandre ; Herbin, Raphaèle ; Lelièvre, Tony
Dates : 17/11/14 - 20/11/14
Année de la rencontre : 2014
URL Congrès : https://www.cirm-math.fr/Archives/?EX=in...

Données de citation

DOI : 10.24350/CIRM.V.18630403
Citer cette vidéo: Nouy, Anthony (2014). Adaptive low-rank approximations for stochastic and parametric equations: a subspace point of view. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18630403
URI : http://dx.doi.org/10.24350/CIRM.V.18630403

Bibliographie



Sélection Signaler une erreur