m

F Nous contacter


0
     
Multi angle

H 1 Integrable probability - Lecture 2

Auteurs : Corwin, Ivan (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

    Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations

    Codes MSC :
    60H15 - Stochastic partial differential equations
    82B23 - Exactly solvable models; Bethe ansatz
    82C22 - Interacting particle systems

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 15/01/15
      Date de captation : 06/01/15
      Collection : Research talks ; Probability and Statistics
      Format : quicktime ; audio/x-aac
      Durée : 01:27:38
      Domaine : Probability & Statistics
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-01-06_Corwin_part2.mp4

    Informations sur la rencontre

    Nom de la rencontre : School on disordered systems, random spatial processes and some applications : introductory school / Ecole sur les systèmes désordonnés, processus spatiaux aléatoires et certaines applications : école d'introduction
    Organisateurs de la rencontre : Bouchaud, Jean-Philippe ; Contucci, Pierluigi ; Giardina, Cristian ; Sidoravicius, Vlada ; Nolin, Pierre ; Vargas, Vincent
    Dates : 05/01/15 - 09/01/15
    Année de la rencontre : 2015
    URL Congrès : http://random15.dm.unibo.it/s_introductory

    Citation Data

    DOI : 10.24350/CIRM.V.18661103
    Cite this video as: Corwin, Ivan (2015). Integrable probability - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18661103
    URI : http://dx.doi.org/10.24350/CIRM.V.18661103


    Voir aussi

    Bibliographie

    1. Borodin, A., Corwin, I., & Sasamoto, T. (2014). From duality to determinants for $q$-TASEP and ASEP. - http://arxiv.org/abs/1207.5035

    2. Borodin, A., Corwin, I., Petrov, L., & Sasamoto, T. (2014). Spectral theory for the $q$-Boson particle system. - http://arxiv.org/abs/1308.3475

    3. Borodin, A., Corwin, I., Petrov, L., & Sasamoto, T. (2014). Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. - http://arxiv.org/abs/1407.8534

    4. Corwin, I. (2014). EXACT Exact solvability of some SPDEs. MSRI Summer Graduate School on Stochastic Partial Differential Equations, Jul 2014, Berkeley, California, United States - http://www.math.columbia.edu/~corwin/MSRIJuly2014.pdf

    5. Corwin, I. (2014). Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class. - http://arxiv.org/abs/1403.6877

    6. Corwin, I. (2014). The $(q, \mu, \nu)$-Boson process and $(q, \mu, \nu)$-TASEP. - http://arxiv.org/abs/1401.3321

Z