Auteurs : Castillo, Jesús M.F. (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
I'd like to share with the audience the Kaltonian story behind [1], started in 2004, including the problems we wanted to solve, and could not.
In that paper we show that Rochberg's generalized interpolation spaces $\mathbb{Z}^{(n)}$ [5] can be arranged to form exact sequences $0\to\mathbb{Z}^{(n)}\to\mathbb{Z}^{(n+k)}\to\mathbb{Z}^{(k)} \to 0$. In the particular case of Hilbert spaces obtained from the interpolation scale of $\ell_p$ spaces then $\mathbb{Z}^{(2)}$ becomes the well-known Kalton-Peck $Z_2$ space, and one gets from here that there are quite natural nontrivial twisted sums $0\to Z_2\to\mathbb{Z}^{(4)}\to Z_2 \to0$ of $Z_2$ with itself. The twisted sum space $\mathbb{Z}^{(4)}$ does not embeds in, or is a quotient of, a twisted Hilbert space and does not contain $\ell_2$ complemented. We will also construct another nontrivial twisted sum of $Z_2$ with itself that contains $\ell_2$ complemented. These results have some connection with the nowadays called Kalton calculus [3, 4], and thus several recent advances [2] in this theory that combines twisted sums and interpolation theory will be shown.
Banach space - twisted sum - complex interpolation - Hilbert space
Codes MSC :
46B20
- Geometry and structure of normed linear spaces
46B70
- Interpolation between normed linear spaces
46M18
- Homological methods
|
Informations sur la Rencontre
Nom de la rencontre : Banach spaces and their applications in analysis / Espaces de Banach et applications à l'analyse Organisateurs de la rencontre : Albiac, Fernando ; Casazza, Peter G. ; Godefroy, Gilles Dates : 12/01/15 - 16/01/15
Année de la rencontre : 2015
DOI : 10.24350/CIRM.V.18666103
Citer cette vidéo:
Castillo, Jesús M.F. (2015). The story of Kalton's last unpublished paper. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18666103
URI : http://dx.doi.org/10.24350/CIRM.V.18666103
|
Bibliographie
- [1] Cabello, F., Castillo, J.M.F., & Kalton, N.J. (2014). Complex interpolation and twisted twisted Hilbert spaces. - http://arxiv.org/abs/1406.6723v1
- [2] Castillo, J.M.F., Ferenczi, V., & Gonzalez, M. (2014). Singular twisted sums generated by complex interpolation. - http://arxiv.org/abs/1410.5505v1
- [3] Kalton, N.J. (1988). Nonlinear commutators in interpolation theory. Memoirs of the American Mathematical Society, 385, 85 p. - https://zbmath.org/?q=an:0658.46059
- [4] Kalton, N.J. (1992). Differentials of complex interpolation processes for Köthe function spaces. Transactions of the American Mathematical Society, 333(2), 479-529 - http://dx.doi.org/10.1090/s0002-9947-1992-1081938-1
- [5] Rochberg, R. (1996). Higher order estimates in complex interpolation theory. Pacific Journal of Mathematics, 174(1), 247-267 - https://www.zbmath.org/?q=an:0866.46047