Auteurs : Dales, H. Garth (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
I shall discuss the theory of multi-norms. This has connections with norms on tensor products and with absolutely summing operators. There are many examples, some of which will be mentioned. In particular we shall describe multi-norms based on Banach lattices, define multi-bounded operators, and explain their connections with regular operators on lattices. We have new results on the equivalences of multi-norms. The theory of decompositions of Banach lattices with respect to the canonical 'Banach-lattice multi-norm' has a pleasing form because of a substantial theorem of Nigel Kalton that I shall state and discuss. I shall also discuss brie y a generalization that gives 'pmulti-norms' (for $1\leq p\leq1$) and an extension of a representation theorem of Pisier that shows that many pmulti-norms are 'sous-espaces de treillis'. The theory is based on joint work with Maxim Polyakov (deceasead), Hung Le Pham (Wellington), Matt Daws (Leeds), Paul Ramsden (Leeds), Oscar Blasco (Valencia), Niels Laustsen (Lancaster), Timur Oikhberg (Illinois), and Vladimir Troitsky (Edmonton).
multi-norms - equivalences - absolutely summing operators - tensor products
Codes MSC :
46B15
- Summability and bases, See also {46A35}
46B28
- Spaces of operators; tensor products; approximation properties [See also 46A32, 46M05, 47L05, 47L20]
46B42
- Banach lattices, See also {46A40, 46B40}
47L10
- Algebras of operators on Banach spaces and other topological linear spaces
|
Informations sur la Rencontre
Nom de la rencontre : Banach spaces and their applications in analysis / Espaces de Banach et applications à l'analyse Organisateurs de la rencontre : Albiac, Fernando ; Casazza, Peter G. ; Godefroy, Gilles ; Lancien, Gilles Dates : 12/01/15 - 16/01/15
Année de la rencontre : 2015
DOI : 10.24350/CIRM.V.18667103
Citer cette vidéo:
Dales, H. Garth (2015). Multi-norms and Banach lattices. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18667103
URI : http://dx.doi.org/10.24350/CIRM.V.18667103
|
Bibliographie
- [1] Blasco, O., Dales, H.G., & Pham, H.L. (submitted). Equivalences involving $(p,q)$- multi-norms, 34 p. - http://www.uv.es/oblasco/Investigacion/ARTI/BDPMultinorm.pdf
- [2] Dales, H.G., & Polyakov, M.E. (2012). Multi-normed spaces. Dissertationes Mathematicae, 488 (2012), 165 p. - http://dx.doi.org/10.4064/dm488-0-1
- [3] Dales, H.G., Daws, M., Pham, H.L. & Ramsden, P. (2012). Multi-norms and injectivity of $L^p(G)$. Journal of the London Mathematical Society. Second Series, 86(3), 779-809 - http://dx.doi.org/10.1112/jlms/jds026