En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
0

Sato-Tate axioms

Sélection Signaler une erreur
Single angle
Auteurs : Fité, Francesc (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions

Codes MSC :
11G10 - Abelian varieties of dimension >1
14G10 - Zeta-functions and related questions
14K15 - Arithmetic ground fields
11M50 - Relations with random matrices

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair - Doctoral school : Frobenius distribution on curves / Chaire Jean-Morlet - Ecole doctorale : distribution de Frobenius sur des courbes
Organisateurs de la rencontre : Kohel, David ; Ritzenthaler, Christophe ; Shparlinski, Igor
Dates : 17/02/14 - 28/02/14
Année de la rencontre : 2014
URL Congrès : https://www.chairejeanmorlet.com/1059.html

Données de citation

DOI : 10.24350/CIRM.V.18605603
Citer cette vidéo: Fité, Francesc (2014). Sato-Tate axioms. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18605603
URI : http://dx.doi.org/10.24350/CIRM.V.18605603

Voir aussi

Bibliographie



Sélection Signaler une erreur