En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Hilbert cubes in arithmetic sets

Sélection Signaler une erreur
Single angle
Auteurs : Elsholtz, Christian (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $S$ be a multiplicatively defined set. Ostmann conjectured, that the set of primes cannot be (nontrivially) written as a sumset $P\sim A+B$ (even in an asymptotic sense, when finitely many deviations are allowed). The author had previously proved that there is no such ternary sumset $P\sim A+B+C$ (with $ \left |A \right |,\left |B \right |,\left |C \right |\geq 2$). More generally, in recent work we showed (with A. Harper) for certain multiplicatively defined sets $S$, namely those which can be treated by sieves, or those with some equidistribution condition of Bombieri-Vinogradov type, that again there is no (nontrivial) ternary decomposition $P\sim A+B+C$. As this covers the case of smooth numbers, this settles a conjecture of A.Sárközy.
Joint work with Adam J. Harper.

Codes MSC :
05-XX - Combinatorics, {For finite fields, See 11Txx}
11-XX - Number theory

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 13/10/14
    Date de captation : 03/02/14
    Sous collection : Research talks
    arXiv category : Combinatorics ; Number Theory
    Domaine : Combinatorics ; Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:31:46
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-02-03_Elsholtz.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair - Main conference : unlikely intersections / Chaire Jean-Morlet - Conférence principale
Organisateurs de la rencontre : Shparlinski, Igor
Dates : 03/02/2014 - 07/02/14
Année de la rencontre : 2014
URL Congrès : https://www.chairejeanmorlet.com/1059a.html

Données de citation

DOI : 10.24350/CIRM.V.18607103
Citer cette vidéo: Elsholtz, Christian (2014). Hilbert cubes in arithmetic sets. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18607103
URI : http://dx.doi.org/10.24350/CIRM.V.18607103

Bibliographie



Sélection Signaler une erreur