En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Noncommutative geometry and time-frequency analysis

Sélection Signaler une erreur
Multi angle
Auteurs : Luef, Franz (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In my talk I am presenting a link between time-frequency analysis and noncommutative geometry. In particular, a connection between the Moyal plane, noncommutative tori and time-frequency analysis. After a brief description of a dictionary between these two areas I am going to explain some consequences for time-frequency analysis and noncommutative geometry such as the construction of projections in the mentioned operator algebras and Gabor frames.

Keywords: modulation spaces - Banach-Gelfand triples - noncommutative tori - Moyal plane - noncommutative geometry - deformation quantization

Codes MSC :
46Fxx - Distributions, generalized functions, distribution spaces [See also 46T30]
46Kxx - Topological (rings and) algebras with an involution [See also 16W10]
81S05 - Canonical quantization, commutation relations and statistics
81S10 - Geometric quantization, symplectic methods (quantum theory)
81S30 - Phase space methods including Wigner distributions, etc.
46S60 - Functional analysis on superspaces (supermanifolds) or graded spaces [See also 58A50 and 58C50]

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 10/03/15
    Date de captation : 23/01/15
    Collection : Special events ; 30 Years of Wavelets
    arXiv category : Functional Analysis ; Mathematical Physics
    Domaine : Analysis and its Applications ; Mathematical Physics ; Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Durée : 00:28:45
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-01-23_Luef.mp4

Informations sur la Rencontre

Nom de la rencontre : 30 years of wavelets / 30 ans des ondelettes
Organisateurs de la rencontre : Feichtinger, Hans G. ; Torrésani, Bruno
Dates : 23/01/15 - 24/01/15
Année de la rencontre : 2015
URL Congrès : https://www.chairejeanmorlet.com/1523.html

Données de citation

DOI : 10.24350/CIRM.V.18713603
Citer cette vidéo: Luef, Franz (2015). Noncommutative geometry and time-frequency analysis. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18713603
URI : http://dx.doi.org/10.24350/CIRM.V.18713603

Bibliographie

  • [1] de Gosson, M., Luef, F. (2014). Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms. Journal of Mathematical Analysis and Applications, 416(2), 947-968 - http://dx.doi.org/10.1016/j.jmaa.2014.03.013

  • [2] de Gosson, M., Luef, F. (2010). Spectral and regularity properties of a pseudo-differential calculus related to Landau quantization. Journal of Pseudo-Differential Operators and Applications, 1(1), 3-34 - http://dx.doi.org/10.1007/s11868-010-0001-6

  • [3] de Gosson, M., Luef, F. (2009). Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics. Physics Reports, 484(5), 131-179 - http://dx.doi.org/10.1016/j.physrep.2009.08.001

  • [4] de Gosson, M., Luef, F. (2009). On the usefulness of modulation spaces in deformation quantization. Journal of Physics A: Mathematical and Theoretical, 42(31), 315205 - http://dx.doi.org/10.1088/1751-8113/42/31/315205

  • [5] de Gosson, M., Luef, F. (2007). Quantum states and Hardy's formulation of the uncertainty principle: a symplectic approach. Letters in Mathematical Physics, 80(1), 69-82 - http://dx.doi.org/10.1007/s11005-007-0150-6

  • [6] de Gosson, M., Luef, F. (2007). Remarks on the fact that the uncertainty principle does not determine the quantum state. Physics Letters A, 364(6), 453-457 - http://dx.doi.org/10.1016/j.physleta.2006.12.024

  • [7] de Gosson, M., Luef, F. (2008). A new approach to the ${\ast}$-genvalue equation. Letters in Mathematical Physics, 85(2-3), 173-183 - http://dx.doi.org/10.1007/s11005-008-0261-8

  • [8] Dias, N.C., de Gosson, M., Luef, F., Prata, J.N. (2012). Quantum mechanics in phase space: the Schrödinger and the Moyal representations. Journal of Pseudo-Differential Operators and Applications, 3(4), 367-398 - http://dx.doi.org/10.1007/s11868-012-0054-9

  • [9] Dias, N.C., de Gosson, M., Luef, F., Prata, J.N. (2011). A pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces. Journal de Mathématiques Pures et Appliquées, 96(5), 423-445 - http://dx.doi.org/10.1016/j.matpur.2011.07.006

  • [10] Dias, N.C., de Gosson, M., Luef, F., Prata, J.N. (2010). A deformation quantization theory for noncommutative quantum mechanics. Journal of Mathematical Physics, 51(7), 072101 - http://dx.doi.org/10.1063/1.3436581

  • [11] Feichtinger, H.G., Kozek, W., Luef, F. (2009). Gabor analysis over finite abelian groups. Applied and Computational Harmonic Analysis, 26(2), 230-248 - http://dx.doi.org/10.1016/j.acha.2008.04.006

  • [12] Feichtinger, H., Luef, F., Cordero, E. (2008). Banach Gelfand triples for Gabor analysis. In L. Rodino, & M.W. Wong (Eds.), Pseudo-differential operators (1-33). Berlin: Springer. (Lecture Notes in Mathematics, 1949) - http://dx.doi.org/10.1007/978-3-540-68268-4_1

  • [13] Feichtinger, H.G., Luef, F., Werther, T. (2007). A guided tour from linear algebra to the foundations of Gabor analysis. In S.S. Goh, A. Ron, & Z. Shen (Eds.), Gabor and wavelet frames (1-49). Hackensack, NJ: World Scientific. (Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 10) - http://dx.doi.org/10.1142/9789812709080_0001

  • [14] Luef, F. (2011). Preferred quantization rules: Born-Jordan versus Weyl. The pseudo-differential point of view. Journal of Pseudo-Differential Operators and Applications, 2(1), 115-139 - http://dx.doi.org/10.1007/s11868-011-0025-6

  • [15] Luef, F. (2011). Projections in noncommutative tori and Gabor frames. Proceedings of the American Mathematical Society, 139(2), 571-582 - http://dx.doi.org/10.1090/s0002-9939-2010-10489-6

  • [16] Luef, F., Rahbani, Z. (2011). On pseudodifferential operators with symbols in generalized Shubin classes and an application to Landau-Weyl operators. Banach Journal of Mathematical Analysis, 5(2), 59-72 - http://dx.doi.org/10.15352/bjma/1313363002

  • [17] Luef, F. (2009). Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. Journal of Functional Analysis, 257(6), 1921-1946 - http://dx.doi.org/10.1016/j.jfa.2009.06.001

  • [18] Luef, F., Manin, Y.I. (2009). Quantum theta functions and Gabor frames for modulation spaces. Letters in Mathematical Physics, 88(1-3), 131-161 - http://dx.doi.org/10.1007/s11005-009-0306-7

  • [19] Luef, F. (2007). Gabor analysis, noncommutative tori and Feichtinger's algebra. In S.S. Goh, A. Ron, & Z. Shen (Eds.), Gabor and wavelet frames (77-106). Hackensack, NJ: World Scientific. (Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 10) - http://dx.doi.org/10.1142/9789812709080_0003

  • [20] Luef, F. (2006). On spectral invariance of non-commutative tori. In D. Han, P.E.T. Jorgensen, & D.R. Larson (Eds.), Operator theory, operator algebras, and applications (131-146). Providence, RI: American Mathematical Society. (Contemporary Mathematics, 414) - http://dx.doi.org/10.1090/conm/414/07805



Sélection Signaler une erreur