Auteurs : Ji, Lizhen (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank $1$, for example, when $X$ is the real hyperbolic space, $\Gamma$ is geometrically finite and $\Gamma$ $\backslash$ $X$ has infinite volume.
When $\Gamma$ is a nonuniform lattice in case $(1)$ or any group in case $(2)$, compactification of $\Gamma$ $\backslash$ $X$ and its boundary play an important role in the geometric scattering theory of $\Gamma$ $\backslash$ $X$. When $X$ is of rank at least $2$, quotients of $X$ of finite volume have also been extensively studied. There has been a lot of recent interest and work to understand quotients $\Gamma$ $\backslash$ $X$ of infinite volume. For example, there are some generalizations of convex cocompact groups, but no generalizations yet of geometrically finite groups. They are related to the notion of thin groups. One naturally expects that these locally symmetric spaces should have real analytic compactifications with corners (with codimension equal to the rank), and their boundary should also be used to parametrize the continuous spectrum and to understand the geometrically scattering theory. These compactifications also provide a natural class of manifolds with corners. In this talk, I will describe some questions, open problems and results.
Codes MSC :
53C35
- Symmetric spaces (differential geometry)
58J50
- Spectral problems; spectral geometry; scattering theory
|
Informations sur la Rencontre
Nom de la rencontre : Analysis and geometry of resonances / Analyse et géométrie des résonances Organisateurs de la rencontre : Guillarmou, Colin ; Hilgert, Joachim ; Pasquale, Angela ; Przebinda, Tomasz Dates : 09/03/15 - 13/03/15
Année de la rencontre : 2015
URL Congrès : http://www.math.univ-metz.fr/~pasquale/C...
DOI : 10.24350/CIRM.V.18729403
Citer cette vidéo:
Ji, Lizhen (2015). Geometry and analysis of locally symmetric spaces of infinite volume. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18729403
URI : http://dx.doi.org/10.24350/CIRM.V.18729403
|
Bibliographie