En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Compressive sensing with time-frequency structured random matrices

Sélection Signaler une erreur
Multi angle
Auteurs : Rauhut, Holger (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This finding triggered an enormous research activity in recent years both in signal processing applications as well as their mathematical foundations. The present talk discusses connections of compressive sensing and time-frequency analysis (the sister of wavelet theory). In particular, we give on overview on recent results on compressive sensing with time-frequency structured random matrices.

Keywords: compressive sensing - time-frequency analysis - wavelets - sparsity - random matrices - $\ell_1$-minimization - radar - wireless communications

Codes MSC :
42C40 - Wavelets and other special systems
60B20 - Random matrices (probabilistic aspects)
90C25 - Convex programming
94A08 - Image processing (compression, reconstruction, etc.)
94A20 - Sampling theory

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 16/03/15
    Date de captation : 24/01/15
    Collection : Special events ; 30 Years of Wavelets
    arXiv category : Information Theory ; Probability
    Domaine : Analysis and its Applications ; Numerical Analysis & Scientific Computing ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:35:41
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-01-24_Rauhut.mp4

Informations sur la Rencontre

Nom de la rencontre : 30 years of wavelets / 30 ans des ondelettes
Organisateurs de la rencontre : Feichtinger, Hans G. ; Torrésani, Bruno
Dates : 23/01/2015 - 24/01/15
Année de la rencontre : 2015
URL Congrès : https://www.chairejeanmorlet.com/1523.html

Données de citation

DOI : 10.24350/CIRM.V.18724603
Citer cette vidéo: Rauhut, Holger (2015). Compressive sensing with time-frequency structured random matrices. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18724603
URI : http://dx.doi.org/10.24350/CIRM.V.18724603

Bibliographie

  • [1] Foucart, S., & Rauhut, H. (2013). A mathematical introduction to compressive sensing. New York, NY: Birkhäuser/Springer. (Applied and Numerical Harmonic Analysis) - http://dx.doi.org/10.1007/978-0-8176-4948-7

  • [2] Krahmer, F., Mendelson, S., & Rauhut, H. (2014). Suprema of chaos processes and the restricted isometry property. Communications on Pure and Applied Mathematics, 67(11), 1877-1904 - http://dx.doi.org/10.1002/cpa.21504

  • [3] Krahmer, F., & Rauhut, H. (2014). Structured random measurements in signal processing. GAMM-Mitteilungen, 37(2),217-238 - http://dx.doi.org/10.1002/gamm.201410010

  • [4] Pfander, G., Rauhut, H., & Tropp, J. (2013). The restricted isometry property for time-frequency structured random matrices. Probability Theory and Related Fields, 156(3-4), 707-737 - http://dx.doi.org/10.1007/s00440-012-0441-4

  • [5] Pfander, G., Rauhut, H. (2010). Sparsity in time-frequency representations. The Journal of Fourier Analysis and Applications, 16(2), 233-260 - http://dx.doi.org/10.1007/s00041-009-9086-9



Sélection Signaler une erreur