m

F Nous contacter


0
     
Multi angle

H 1 Invariant random subgroups of acylindrically hyperbolic groups

Auteurs : Osin, Denis V. (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed.

    Codes MSC :
    20F65 - Geometric group theory
    20F67 - Hyperbolic groups and nonpositively curved groups

      Informations sur la Vidéo

      Réalisateur : Vichi, Pascal
      Langue : Anglais
      Date de publication : 13/10/15
      Date de captation : 17/09/15
      Collection : Research talks ; Algebra ; Geometry
      Format : MP4 ; audio/x-aac
      Durée : 00:46:09
      Domaine : Algebra ; Geometry
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-09-17_Osin.mp4

    Informations sur la rencontre

    Nom de la rencontre : GAGTA-9: Geometric, Asymptotic and Combinatorial Group Theory and Applications / GAGTA-9 : Théorie géométrique, asymptotique et combinatoire des groupes et applications
    Organisateurs de la rencontre : Coulbois, Thierry ; Weil, Pascal
    Dates : 14/09/15 - 18/09/15
    Année de la rencontre : 2015
    URL Congrès : http://conferences.cirm-math.fr/1212.html

    Citation Data

    DOI : 10.24350/CIRM.V.18837103
    Cite this video as: Osin, Denis V. (2015). Invariant random subgroups of acylindrically hyperbolic groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18837103
    URI : http://dx.doi.org/10.24350/CIRM.V.18837103


    Bibliographie

    1. Osin, D. (2015). Acylindrically hyperbolic groups. - http://arxiv.org/abs/1304.1246

Z