F Nous contacter

Multi angle

H 1 Random graphs and applications to Coxeter groups

Auteurs : Behrstock, Jason (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Erdös and Rényi introduced a model for studying random graphs of a given "density" and proved that there is a sharp threshold at which lower density random graphs are disconnected and higher density ones are connected. Motivated by ideas in geometric group theory we will explain some new threshold theorems we have discovered for random graphs. We will then explain applications of these results to the geometry of Coxeter groups. Some of this talk will be on joint work with Hagen and Sisto; other parts are joint work with Hagen, Susse, and Falgas-Ravry.

    Codes MSC :
    05C80 - Random graphs
    20F65 - Geometric group theory

      Informations sur la Vidéo

      Réalisateur : Vichi, Pascal
      Langue : Anglais
      Date de publication : 13/10/15
      Date de captation : 15/09/15
      Collection : Research talks ; Algebra ; Combinatorics ; Geometry
      Format : MP4 ; audio/x-aac
      Durée : 00:58:22
      Domaine : Algebra ; Geometry ; Combinatorics
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-09-15_Behrstock.mp4

    Informations sur la rencontre

    Nom de la rencontre : GAGTA-9: geometric, asymptotic and combinatorial group theory and applications / GAGTA-9 : Théorie géométrique, asymptotique et combinatoire des groupes et applications
    Organisateurs de la rencontre : Coulbois, Thierry ; Weil, Pascal
    Dates : 14/09/15 - 18/09/15
    Année de la rencontre : 2015
    URL Congrès : http://conferences.cirm-math.fr/1212.html

    Citation Data

    DOI : 10.24350/CIRM.V.18838603
    Cite this video as: Behrstock, Jason (2015). Random graphs and applications to Coxeter groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18838603
    URI : http://dx.doi.org/10.24350/CIRM.V.18838603


    1. Behrstock, J., Hagen, M.F., & Sisto, A. (2015). Hierarchically hyperbolic spaces I: curve complexes for cubical groups. - http://arxiv.org/abs/1412.2171

    2. Behrstock, J., Falgas-Ravry, V., Hagen, M.F., & Susse, T. (2015). Global Structural Properties of Random Graphs. - http://arxiv.org/abs/1505.01913