En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Tantalizing patterns of closed curves on surfaces which became theorems

Sélection Signaler une erreur
Multi angle
Auteurs : Chas, Moira (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Consider an orientable surface S with negative Euler characteristic, a minimal set of generators of the fundamental group of S, and a hyperbolic metric on S. Each unbased homotopy class C of closed oriented curves on S determines three numbers: the word length (that is, the minimal number of letters needed to express C as a cyclic word in the generators and their inverses), the minimal geometric self-intersection number, and finally the geometric length. Also, the set of free homotopy classes of closed directed curves on S (as a set) is the vector space basis of a Lie algebra discovered by Goldman. This Lie algebra is closely related to the intersection structure of curves on S. These three numbers, as well as the Goldman Lie bracket of two classes, can be explicitly computed (or approximated) using a computer. We will discuss the algorithms to compute or approximate these numbers, and how these computer experiments led to counterexamples to existing conjectures, formulations of new conjectures and (sometimes) subsequent theorems.This talk means to be accessible to mathematically young people.These results are joint work with different collaborators; mainly Arpan Kabiraj, Steven Lalley and Rachel Zhang.

Keywords : hyperbolic geometry; curves on surfaces; low-dimensional topology

Codes MSC :
57K20 - 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 17/05/2022
    Date de captation : 03/05/2022
    Sous collection : Research talks
    arXiv category : Geometric Topology ; Analysis of PDEs
    Domaine : Geometry ; Topology
    Format : MP4 (.mp4) - HD
    Durée : 01:06:36
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05--03_Chas.mp4

Informations sur la Rencontre

Nom de la rencontre : Structures on Surfaces / Structures sur des surfaces
Organisateurs de la rencontre : De Mesmay, Arnaud ; Despré, Vincent ; Hubard, Alfredo ; Parlier, Hugo ; Teillaud, Monique
Dates : 02/05/2022 - 06/05/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2533.html

Données de citation

DOI : 10.24350/CIRM.V.19914403
Citer cette vidéo: Chas, Moira (2022). Tantalizing patterns of closed curves on surfaces which became theorems. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19914403
URI : http://dx.doi.org/10.24350/CIRM.V.19914403

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur