En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Function valued random fields: tangents, intrinsic stationarity, self-similarity

Sélection Signaler une erreur
Multi angle
Auteurs : Stoev, Stilian (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We study random fields taking values in a separable Hilbert space H. First, we focus on their local structure and establish a counterpart to Falconer's characterization of tangent fields. That is, we show (under general conditions) that the tangent fields to a H-valued process are self-similar and almost all of them have stationary increments. We go a bit further and study higher-order tangent fields. This leads naturally to the study of self-similar intrinsic random functions (IRF) taking values in a Hilbert space. To this end, we begin by extending Matheron's theory of scalar-valued IRFs and provide the spectral representation of H-valued IRFs. We then use this theory to characterize large classes of operator self-similar H-valued IRF processes, which in the Gaussian case can be viewed as the H-valued counterparts to fractional Brownian fields. These general results may find applications to the study of long-range dependence for random fields taking values in a Hilbert space as well as to modeling function-valued spatial data.

Keywords : tangent field; IRFk; operator self-similarity; spectral theory; functional data analysis

Codes MSC :
60B12 - Limit theorems for vector-valued random variables (infinite-dimensional case)
60G12 - General second-order processes
60G18 - Self-similar processes
62H11 - Directional data; spatial statistics
62R10 - Functional data analysis

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 25/07/2022
    Date de captation : 05/07/2022
    Sous collection : Research talks
    arXiv category : Probability ; Statistics Theory
    Domaine : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:05:34
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-07-05_Stoev.mp4

Informations sur la Rencontre

Nom de la rencontre : Heavy Tails, Long-Range Dependence, and Beyond / Queues lourdes, dépendance de long terme et  au-delà
Organisateurs de la rencontre : Biermé, Hermine ; Kulik, Rafal ; Mikosch, Thomas ; Wang, Yizao ; Wintenberger, Olivier
Dates : 04/07/2022 - 08/07/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2633.html

Données de citation

DOI : 10.24350/CIRM.V.19938103
Citer cette vidéo: Stoev, Stilian (2022). Function valued random fields: tangents, intrinsic stationarity, self-similarity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19938103
URI : http://dx.doi.org/10.24350/CIRM.V.19938103

Voir aussi

Bibliographie

  • SHEN, Jinqi, STOEV, Stilian, et HSING, Tailen. Tangent fields, intrinsic stationarity, and self-similarity (with a supplement on Matheron Theory). arXiv preprint arXiv:2010.14715, 2020. - https://doi.org/10.48550/arXiv.2010.14715



Imagette Video

Sélection Signaler une erreur