En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Conditional independence in extremes

Sélection Signaler une erreur
Multi angle
Auteurs : Strokorb, Kirstin (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that lies at the heart of each approach. In this work we develop a notion of conditional independence defined directly on the exponent measure (and even more generally on measures that explode at the origin) that extends recent work of Engelke and Hitz (2019), who had been confined to homogeneous measures with density. We prove easier checkable equivalent conditions to verify this new conditional independence in terms of a reduction to simple test classes, probability kernels and density factorizations. This provides a pathsway to graphical modelling among general multivariate (max-)infinitely distributions. Structural max-linear models turn out to form a Bayesian network with respect to our new form of conditional independence.

Keywords : graphical models; conditional independence; exponent measure; Lévy measure; exploding measure, extreme values; stability

Codes MSC :
60G51 - Processes with independent increments; Lévy processes
60G70 - Extreme value theory; extremal processes
62H22 - Probabilistic graphical models

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 10/10/2022
    Date de captation : 26/09/2022
    Sous collection : Research talks
    arXiv category : Probability
    Domaine : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:36:34
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-09-26 Strokorb.mp4

Informations sur la Rencontre

Nom de la rencontre : Adaptive and High-Dimensional Spatio-Temporal Methods for Forecasting / Méthodes spatio-temporelles adaptatives et en grande dimension pour la prédiction
Organisateurs de la rencontre : Bardet, Jean-Marc ; Naveau, Philippe ; Subba Rao, Suhasini ; Veraart, Almut ; von Sachs, Rainer
Dates : 26/09/2022 - 30/09/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2619.html

Données de citation

DOI : 10.24350/CIRM.V.19961703
Citer cette vidéo: Strokorb, Kirstin (2022). Conditional independence in extremes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19961703
URI : http://dx.doi.org/10.24350/CIRM.V.19961703

Voir aussi

Bibliographie

  • AMÉNDOLA, Carlos, KLÜPPELBERG, Claudia, LAURITZEN, Steffen, et al. Conditional independence in max-linear Bayesian networks. The Annals of Applied Probability, 2022, vol. 32, no 1, p. 1-45. - http://dx.doi.org/10.1214/21-AAP1670

  • ENGELKE, Sebastian et HITZ, Adrien S. Graphical models for extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2020, vol. 82, no 4, p. 871-932. - https://doi.org/10.1111/rssb.12355

  • LAURITZEN, Steffen L. Graphical models. Clarendon Press, 1996. -



Imagette Video

Sélection Signaler une erreur