https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 1
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 1

Sélection Signaler une erreur
Post-edited
Auteurs : Seppäläinen, Timo (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
limiting shape functions tilt-velocity duality stationary cocycles ergodic theorem for cocycles point-to-level variational formula point-to-point variational formula cocycles adapted to the potential Busemann functions stationary percolation questions of the audience

Résumé : Variational formulas for limit shapes of directed last-passage percolation models. Connections of minimizing cocycles of the variational formulas to geodesics, Busemann functions, and stationary percolation.

Codes MSC :
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
60K37 - Processes in random environments
82C22 - Interacting particle systems
82C43 - Time-dependent percolation
82D60 - Polymers (statistical mechanics)

Ressources complémentaires :
http://www.cirm-math.fr/ProgWeebly/Renc1559/Seppalainen.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 16/03/17
    Date de captation : 06/03/17
    Sous collection : Research School
    arXiv category : Probability
    Domaine : Probability & Statistics ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Durée : 01:31:47
    Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-03-06_Seppalainen_Part1.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair - Doctoral school: Random structures in statistical mechanics and mathematical physics / Chaire Jean-Morlet - Ecole doctorale : Structures aléatoires en mécanique statistique et physique mathématique
Organisateurs de la rencontre : Khanin, Konstantin ; Seppäläinen, Timo ; Shlosman, Senya
Dates : 06/03/17 - 10/03/17
Année de la rencontre : 2017
URL Congrès : https://www.chairejeanmorlet.com/1559.html

Données de citation

DOI : 10.24350/CIRM.V.19138103
Citer cette vidéo: Seppäläinen, Timo (2017). Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19138103
URI : http://dx.doi.org/10.24350/CIRM.V.19138103

Voir aussi

Bibliographie

  • Balázs, M., Cator, E., & Seppäläinen, T. (2006). Cube root fluctuations for the corner growth model associated to the exclusion process. Electronic Journal of Probability, 11(42), 1094–1132 - https://arxiv.org/abs/math/0603306

  • Balázs, M., & Seppäläinen, T. (2010). Order of current variance and diffusivity in the asymmetric simple exclusion process. Annals of Mathematics. Second Series, 171(2), 1237–1265 - http://dx.doi.org/10.4007/annals.2010.171.1237

  • Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2015). Ratios of partition functions for the log-gamma polymer. The Annals of Probability, 43(5), 2282–2331 - http://projecteuclid.org/euclid.aop/1441792286

  • Georgiou, N., Rassoul-Agha, F., & Seppäläinen, T. (2016). Variational formulas and cocycle solutions for directed polymer and percolation models. Communications in Mathematical Physics, 346(2), 741–779 - http://dx.doi.org/10.1007/s00220-016-2613-z

  • Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2013). Quenched free energy and large deviations for random walks in random potentials. Communications on Pure and Applied Mathematics, 66(2), 202–244 - http://dx.doi.org/10.1002/cpa.21417

  • Rassoul-Agha, F., & Seppäläinen, T. (2014). Quenched point-to-point free energy for random walks in random potentials. Probability Theory and Related Fields, 158(3-4), 711–750 - http://dx.doi.org/10.1007/s00440-013-0494-z



Sélection Signaler une erreur