En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Complex torus, its good compactifications and the ring of conditions

Sélection Signaler une erreur
Multi angle
Auteurs : Khovanskii, Askold (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $X$ be an algebraic subvariety in $(\mathbb{C}^*)^n$. According to the good compactifification theorem there is a complete toric variety $M \supset (\mathbb{C}^*)^n$ such that the closure of $X$ in $M$ does not intersect orbits in $M$ of codimension bigger than dim$_\mathbb{C} X$. All proofs of this theorem I met in literature are rather involved.
The ring of conditions of $(\mathbb{C}^*)^n$ was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$. Its construction is based on the good compactification theorem. Recently two nice geometric descriptions of this ring were found. Tropical geometry provides the first description. The second one can be formulated in terms of volume function on the cone of convex polyhedra with integral vertices in $\mathbb{R}^n$. These descriptions are unified by the theory of toric varieties.
I am going to discuss these descriptions of the ring of conditions and to present a new version of the good compactification theorem. This version is stronger that the usual one and its proof is elementary.

Codes MSC :
14M17 - Homogeneous spaces and generalizations
14M25 - Toric varieties, Newton polyhedra
14T05 - Tropical geometry

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 22/09/2017
    Date de captation : 21/09/2017
    Sous collection : Research talks
    arXiv category : Algebraic Geometry ; Applications
    Domaine : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Durée : 01:04:57
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-09-21_Khovanskii.mp4

Informations sur la Rencontre

Nom de la rencontre : Perspectives in real geometry / Perspectives en géométrie réelle
Organisateurs de la rencontre : Brugallé, Erwan ; Itenberg, Ilia ; Shustin, Eugenii
Dates : 18/09/2017 - 22/09/2017
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1782.html

Données de citation

DOI : 10.24350/CIRM.V.19222103
Citer cette vidéo: Khovanskii, Askold (2017). Complex torus, its good compactifications and the ring of conditions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19222103
URI : http://dx.doi.org/10.24350/CIRM.V.19222103

Voir aussi

Bibliographie

  • Kazarnovskii, B., & Khovanskii, A. (2017). Newton polyhedra, tropical geometry and the ring of condition for $(\mathbb{C}^*)^n$. - https://arxiv.org/abs/1705.04248



Sélection Signaler une erreur