En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Least squares regression Monte Carlo for approximating BSDES and semilinear PDES

Sélection Signaler une erreur
Multi angle
Auteurs : Turkedjiev, Plamen (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this lecture, we shall discuss the key steps involved in the use of least squares regression for approximating the solution to BSDEs. This includes how to obtain explicit error estimates, and how these error estimates can be used to tune the parameters of the numerical scheme based on complexity considerations.
The algorithms are based on a two stage approximation process. Firstly, a suitable discrete time process is chosen to approximate the of the continuous time solution of the BSDE. The nodes of the discrete time processes can be expressed as conditional expectations. As we shall demonstrate, the choice of discrete time process is very important, as its properties will impact the performance of the overall numerical scheme. In the second stage, the conditional expectation is approximated in functional form using least squares regression on synthetically generated data – Monte Carlo simulations drawn from a suitable probability distribution. A key feature of the regression step is that the explanatory variables are built on a user chosen finite dimensional linear space of functions, which the user specifies by setting basis functions. The choice of basis functions is made on the hypothesis that it contains the solution, so regularity and boundedness assumptions are used in its construction. The impact of the choice of the basis functions is exposed in error estimates.
In addition to the choice of discrete time approximation and the basis functions, the Markovian structure of the problem gives significant additional freedom with regards to the Monte Carlo simulations. We demonstrate how to use this additional freedom to develop generic stratified sampling approaches that are independent of the underlying transition density function. Moreover, we demonstrate how to leverage the stratification method to develop a HPC algorithm for implementation on GPUs.
Thanks to the Feynmann-Kac relation between the the solution of a BSDE and its associated semilinear PDE, the approximation of the BSDE can be directly used to approximate the solution of the PDE. Moreover, the smoothness properties of the PDE play a crucial role in the selection of the hypothesis space of regressions functions, so this relationship is vitally important for the numerical scheme.
We conclude with some draw backs of the regression approach, notably the curse of dimensionality.

Codes MSC :
60H10 - Stochastic ordinary differential equations
60H35 - Computational methods for stochastic equations
65C05 - Monte Carlo methods
65C30 - Stochastic differential and integral equations
93E24 - Least squares and related methods

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs17/Slides/turkedjiev.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/08/17
    Date de captation : 20/07/17
    Sous collection : Research School
    arXiv category : Probability ; Numerical Analysis ; Optimization and Control
    Domaine : Numerical Analysis & Scientific Computing ; Probability & Statistics ; Control Theory & Optimization
    Format : MP4 (.mp4) - HD
    Durée : 01:46:24
    Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-07-20_Turkedjiev.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen
Organisateurs de la rencontre : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme
Dates : 17/07/17 - 25/08/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1556.html

Données de citation

DOI : 10.24350/CIRM.V.19200703
Citer cette vidéo: Turkedjiev, Plamen (2017). Least squares regression Monte Carlo for approximating BSDES and semilinear PDES. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19200703
URI : http://dx.doi.org/10.24350/CIRM.V.19200703

Voir aussi

Bibliographie



Sélection Signaler une erreur