Auteurs : Tolsa, Xavier (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The weak-$A_\infty$ condition is a variant of the usual $A_\infty$ condition which does not require any doubling assumption on the weights. A few years ago Hofmann and Le showed that, for an open set $\Omega\subset \mathbb{R}^{n+1}$ with $n$-AD-regular boundary, the BMO-solvability of the Dirichlet problem for the Laplace equation is equivalent to the fact that the harmonic measure satisfies the weak-$A_\infty$ condition. Aiming for a geometric description of the open sets whose associated harmonic measure satisfies the weak-$A_\infty$ condition, Hofmann and Martell showed in 2017 that if $\partial\Omega$ is uniformly $n$-rectifiable and a suitable connectivity condition holds (the so-called weak local John condition), then the harmonic measure satisfies the weak-$A_\infty$ condition, and they conjectured that the converse implication also holds.
In this talk I will discuss a recent work by Azzam, Mourgoglou and myself which completes the proof of the Hofman-Martell conjecture, by showing that the weak-$A_\infty$ condition for harmonic measure implies the weak local John condition.
Keywords : BMO; Dirichlet problem; harmonic measure; weak-$A_\infty$; John condition
Codes MSC :
28A75
- Length, area, volume, other geometric measure theory
28A78
- Hausdorff and packing measures
31B15
- Potentials and capacities, extremal length
35J15
- General theory of second-order, elliptic equations
35J08
- Green's functions
|
Informations sur la Rencontre
Nom de la rencontre : Harmonic analysis of elliptic and parabolic partial differential equations / Analyse harmonique des équations aux dérivées partielles elliptiques et paraboliques Organisateurs de la rencontre : Monniaux, Sylvie ; Portal, Pierre Dates : 23/04/2018 - 27/04/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1741.html
DOI : 10.24350/CIRM.V.19398003
Citer cette vidéo:
Tolsa, Xavier (2018). The weak-$A_\infty$ condition for harmonic measure. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19398003
URI : http://dx.doi.org/10.24350/CIRM.V.19398003
|
Voir aussi
Bibliographie
- Azzam, J., Mourgoglou, M., & Tolsa, X. (2018). A geometric characterization of the weak-$A_\infty$ condition for harmonic measure. - https://arxiv.org/abs/1803.07975