En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The weak-$A_\infty$ condition for harmonic measure

Sélection Signaler une erreur
Multi angle
Auteurs : Tolsa, Xavier (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The weak-$A_\infty$ condition is a variant of the usual $A_\infty$ condition which does not require any doubling assumption on the weights. A few years ago Hofmann and Le showed that, for an open set $\Omega\subset \mathbb{R}^{n+1}$ with $n$-AD-regular boundary, the BMO-solvability of the Dirichlet problem for the Laplace equation is equivalent to the fact that the harmonic measure satisfies the weak-$A_\infty$ condition. Aiming for a geometric description of the open sets whose associated harmonic measure satisfies the weak-$A_\infty$ condition, Hofmann and Martell showed in 2017 that if $\partial\Omega$ is uniformly $n$-rectifiable and a suitable connectivity condition holds (the so-called weak local John condition), then the harmonic measure satisfies the weak-$A_\infty$ condition, and they conjectured that the converse implication also holds.
In this talk I will discuss a recent work by Azzam, Mourgoglou and myself which completes the proof of the Hofman-Martell conjecture, by showing that the weak-$A_\infty$ condition for harmonic measure implies the weak local John condition.

Keywords : BMO; Dirichlet problem; harmonic measure; weak-$A_\infty$; John condition

Codes MSC :
28A75 - Length, area, volume, other geometric measure theory
28A78 - Hausdorff and packing measures
31B15 - Potentials and capacities, extremal length
35J15 - General theory of second-order, elliptic equations
35J08 - Green's functions

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 25/04/2018
    Date de captation : 24/04/2018
    Sous collection : Research talks
    arXiv category : Classical Analysis and ODEs ; Analysis of PDEs
    Domaine : Analysis and its Applications ; PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:58:21
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-04-24_Tolsa.mp4

Informations sur la Rencontre

Nom de la rencontre : Harmonic analysis of elliptic and parabolic partial differential equations / Analyse harmonique des équations aux dérivées partielles elliptiques et paraboliques
Organisateurs de la rencontre : Monniaux, Sylvie ; Portal, Pierre
Dates : 23/04/2018 - 27/04/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1741.html

Données de citation

DOI : 10.24350/CIRM.V.19398003
Citer cette vidéo: Tolsa, Xavier (2018). The weak-$A_\infty$ condition for harmonic measure. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19398003
URI : http://dx.doi.org/10.24350/CIRM.V.19398003

Voir aussi

Bibliographie

  • Azzam, J., Mourgoglou, M., & Tolsa, X. (2018). A geometric characterization of the weak-$A_\infty$ condition for harmonic measure. - https://arxiv.org/abs/1803.07975



Sélection Signaler une erreur