m

F Nous contacter


0
     
Multi angle

H 1 Structure of hyperbolic manifolds - Lecture 2

Auteurs : Purcell, Jessica (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in the 1970s, 80s, and 90s, but continue to have modern applications.

    Codes MSC :
    57M25 - Knots and links in $S^3$
    57M27 - Invariants of knots and 3-manifolds
    57M50 - Geometric structures on low-dimensional manifolds

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 27/06/2018
      Date de captation : 13/06/2018
      Sous collection : Research School
      Format : MP4
      arXiv category : Geometric Topology
      Domaine : Topology ; Geometry
      Durée : 01:02:25
      Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2018-06-13_Purcell_Part2.mp4

    Informations sur la rencontre

    Nom de la rencontre : Jean-Morlet chair - Research school: 3-manifolds and geometric group theory / Chaire Jean-Morlet - École de recherche : 3-variétés et théorie géométrique des groupes
    Organisateurs de la rencontre : Paoluzzi, Luisa ; Walsh, Genevieve
    Dates : 11/06/2018 - 15/06/2018
    Année de la rencontre : 2018
    URL Congrès : https://www.chairejeanmorlet.com/1905.html

    Citation Data

    DOI : 10.24350/CIRM.V.19415803
    Cite this video as: Purcell, Jessica (2018). Structure of hyperbolic manifolds - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19415803
    URI : http://dx.doi.org/10.24350/CIRM.V.19415803


    Voir aussi

    Bibliographie

    1. Futer, D., Kalfagianni, E., & Purcell, J.S. (2017). A survey of hyperbolic knot theory. - https://arxiv.org/abs/1708.07201

    2. Purcell, J.S. (2018). Hyperbolic knot theory. Textbook draft - http://users.monash.edu/~jpurcell/hypknottheory.html

Z