En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Simultaneous rational approximations to several functions of a real variable

Sélection Signaler une erreur
Multi angle
Auteurs : Beresnevich, Victor (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will describe a very recent development for non-degenerate maps as well as a recently introduced simple technique based on the so-called Mass Transference Principle that surprisingly requires no conditions on the functions except them being $C^2$.

Keywords : Hausdorff dimension; simultaneous approximation; Mass Transference Principle

Codes MSC :
11J13 - Simultaneous homogeneous approximation, linear forms
11J83 - Metric theory of numbers
11K60 - Diophantine approximation (probabilistic number theory)

Informations sur la Rencontre

Nom de la rencontre : Diophantine approximation and transcendence / Approximation diophantienne et transcendance
Organisateurs de la rencontre : Adamczewski, Boris ; Bugeaud, Yann ; Habegger, Philipp ; Laurent, Michel ; Zannier, Umberto
Dates : 10/09/2018 - 14/09/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1841.html

Données de citation

DOI : 10.24350/CIRM.V.19445403
Citer cette vidéo: Beresnevich, Victor (2018). Simultaneous rational approximations to several functions of a real variable. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19445403
URI : http://dx.doi.org/10.24350/CIRM.V.19445403

Voir aussi

Bibliographie



Sélection Signaler une erreur