En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear Boltzmann equation and fractional diffusion

Sélection Signaler une erreur
Multi angle
Auteurs : Golse, François (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : (Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma \to +\infty$ and $1 − \alpha ∼ C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of
a kinetic model which is based on the harmonic extension definition of $\sqrt{−\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (“heavy tails”) or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273–280].

Keywords : linear Boltzmann equation; radiative transfer equation; diffusion approximation; fractional diffusion

Codes MSC :
35Q20 - Boltzmann equations
45K05 - Integro-partial differential equations
45M05 - Asymptotics
82C70 - Transport processes
85A25 - Radiative transfer (astronomy and astrophysics)
35R11 - Fractional partial differential equations

Ressources complémentaires :
https://www.cirm-math.fr/ProgWeebly/Renc1862/Golse.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 19/12/2018
    Date de captation : 13/12/2018
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE
    Format : MP4 (.mp4) - HD
    Durée : 01:06:51
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-12-13_Golse.mp4

Informations sur la Rencontre

Nom de la rencontre : Non standard diffusions in fluids, kinetic equations and probability / Diffusions non standards en mécanique des fluides, équations cinétiques et probabilités
Organisateurs de la rencontre : Imbert, Cyril ; Mouhot, Clément ; Tristani, Isabelle
Dates : 10/12/2018 - 14/12/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1862.html

Données de citation

DOI : 10.24350/CIRM.V.19483603
Citer cette vidéo: Golse, François (2018). Linear Boltzmann equation and fractional diffusion. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19483603
URI : http://dx.doi.org/10.24350/CIRM.V.19483603

Voir aussi

Bibliographie

  • Bardos, C., Golse, F., & Moyano, I. (2018). Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11(4), 1011-1036 - http://dx.doi.org/10.3934/krm.2018039



Sélection Signaler une erreur