Auteurs : Mangolte, Frédéric (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
We study the following real version of the famous Abhyankar-Moh Theorem: Which real rational map from the affine line to the affine plane, whose real part is a non-singular real closed embedding of $\mathbb{R}$ into $\mathbb{R}^2$, is equivalent, up to a birational diffeomorphism of the plane, to the linear one? We show that in contrast with the situation in the categories of smooth manifolds with smooth maps and of real algebraic varieties with regular maps where there is only one equivalence class up to isomorphism, there are plenty of non-equivalent smooth rational closed embeddings up to birational diffeomorphisms. Some of these are simply detected by the non-negativity of the real Kodaira dimension of the complement of their images. But we also introduce finer invariants derived from topological properties of suitable fake real planes associated to certain classes of such embeddings.
(Joint Work with Adrien Dubouloz).
Keywords : real algebraic model; affine line; rational fibration; birational diffeomorphism; Abhyankar-Moh
Codes MSC :
14E05
- Rational and birational maps
14J26
- Rational and ruled surfaces
14P25
- Topology of real algebraic varieties
14R05
- Classification of affine varieties
14R25
- Affine fibrations
|
Informations sur la Rencontre
Nom de la rencontre : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe Organisateurs de la rencontre : Benoist, Olivier ; Pasquier, Boris Dates : 17/12/2018 - 21/12/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1858.html
DOI : 10.24350/CIRM.V.19484803
Citer cette vidéo:
Mangolte, Frédéric (2018). Algebraic models of the line in the real affine plane. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19484803
URI : http://dx.doi.org/10.24350/CIRM.V.19484803
|
Voir aussi
Bibliographie
- Dubouloz, A., & Mangolte, F. (2018). Algebraic models of the line in the real affine plane. 〈arXiv:1805.11406〉 - https://arxiv.org/abs/1805.11406
- Dubouloz, A., & Mangolte, F. (2017). Fake real planes: exotic affine algebraic models of $\mathbb{R}^2$. Selecta Mathematica, 23(3), 1619-1668 - http://dx.doi.org/10.1007/s00029-017-0326-6
- Dubouloz, A., & Mangolte, F. (2016). Real frontiers of fake planes. European Journal of Mathematics, 2(1), 140-168 - http://dx.doi.org/10.1007/s40879-015-0087-8
- Mangolte, F. (2017) Variétés algébriques réelles. Paris: Société Mathématique de France - https://smf.emath.fr/publications/varietes-algebriques-reelles