En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Polyhedral discretizations for industrial applications

Sélection Signaler une erreur
Multi angle
Auteurs : Bonelle, Jérôme (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : This talk will be devoted to the usage of new discretization schemes on polyhedral meshes in an industrial context. These discretizations called CDO [1, 2] (Compatible Discrete Operator) or Hybrid High Order [3,4] (HHO) schemes have been recently implemented in Code Saturne [5]. Code Saturne is an open-source code developed at EDF R&D aiming at simulating single-phase flows. First, the advantages of robust polyhedral discretizations will be recalled. Then, the underpinning principles of CDO schemes will be presented as well as some applications: diffusion equations, transport problems, groundwater flows or the discretization of the Stokes equations. High Performance Computing (HPC) aspects will be also discussed as it is an essential feature in an industrial context either to address complex and large computational domains or to get a quick answer. Some highlights on the main outlooks will be given to conclude.

Codes MSC :
65N50 - Mesh generation and refinement
65Nxx - Partial differential equations, boundary value problems
76S05 - Flows in porous media; filtration; seepage

Ressources complémentaires :
https://imag.umontpellier.fr/~di-pietro/poems2019/jerome_bonelle.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 28/05/2019
    Date de captation : 02/05/2019
    Sous collection : Research talks
    arXiv category : Numerical Analysis ; Analysis of PDEs
    Domaine : PDE ; Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Durée : 00:38:05
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-02_Bonelle.mp4

Informations sur la Rencontre

Nom de la rencontre : POEMs - POlytopal Element Methods in Mathematics and Engineering
Organisateurs de la rencontre : Antonietti, Paola ; Beirão da Veiga, Lourenço ; Di Pietro, Daniele ; Droniou, Jérôme ; Krell, Stella
Dates : 29/04/2019 - 03/05/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1954.html

Données de citation

DOI : 10.24350/CIRM.V.19529203
Citer cette vidéo: Bonelle, Jérôme (2019). Polyhedral discretizations for industrial applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19529203
URI : http://dx.doi.org/10.24350/CIRM.V.19529203

Voir aussi

Bibliographie

  • BONELLE, Jérôme et ERN, Alexandre. Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, vol. 48, no 2, p. 553-581. - https://doi.org/10.1051/m2an/2013104

  • Pierre Cantin, Jérôme Bonelle, Erik Burman, Alexandre Ern. A vertex-based scheme on polyhedral meshes for advection-reaction equations with sub-mesh stabilization. Computers and Mathematics with Applications, Elsevier, 2016 - https://doi.org/10.1016/j.camwa.2016.07.038

  • Daniele Antonio Di Pietro, Alexandre Ern, Simon Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Computational Methods in Applied Mathematics, De Gruyter, 2014, 14 (4), pp.461-472. - https://doi.org/10.1515/cmam-2014-0018

  • Daniele Di Pietro, Alexandre Ern, Alexander Linke, Friedhelm Schieweck. A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 306, pp.175-195. - https://doi.org/10.1016/j.cma.2016.03.033

  • Code Saturne website - https://www.code-saturne.org



Sélection Signaler une erreur