F Nous contacter

Multi angle

H 1 Artin groups and mapping class groups

Auteurs : Hamenstädt, Ursula (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Using a very recent result of Calderon and Salter, we relate small type Artin groups defined by Coxeter diagram which are trees to mapping class groups. This gives information on both the Artin groups with respect to commensurability and hyperbolicity of the parabolic subgroup graph as well as information on the mapping class group and its associated geometric spaces, namely generating sets of finite index subgroups and fundamental groups of strata of abelian differentials. I’ll try to highlight the many ways in which this reflects various aspects of Mladen’s work.

    Codes MSC :
    20F65 - Geometric group theory
    53C24 - rigidity results
    57S25 - Groups acting on specific manifolds

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 18/07/2019
      Date de captation : 20/06/2019
      Collection : Research talks ; Geometry ; Topology
      Format : MP4
      Durée : 00:50:56
      Domaine : Geometry ; Topology
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2019-06-20_Hamenstadt.mp4

    Informations sur la rencontre

    Nom de la rencontre : Aspects of Non-Positive and Negative Curvature in Group Theory / Courbure négative et courbure négative ou nulle en théorie des groupes
    Organisateurs de la rencontre : Bromberg, Kenneth ; Hilion, Arnaud ; Kazachkov, Ilya ; Sageev, Michah ; Tao, Jing
    Dates : 17/06/2019 - 21/06/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1958.html

    Citation Data

    DOI : 10.24350/CIRM.V.19539303
    Cite this video as: Hamenstädt, Ursula (2019). Artin groups and mapping class groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19539303
    URI : http://dx.doi.org/10.24350/CIRM.V.19539303

    Voir aussi