F Nous contacter

Multi angle

H 1 Condensation in random trees 1/3

Auteurs : Kortchemski, Igor (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé-Galton-Watson trees (which is the simplest
    possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

    Section 1 gives some history and motivations for studying Bienaymé-Galton-Watson trees.
    Section 2 defines Bienaymé-Galton-Watson trees.
    Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
    Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
    Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
    Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

    The goal of these lecture notes is to be as most self-contained as possible.

    Keywords : ramdom trees; random walks; heavy tails; one-big jump principle

    Codes MSC :
    05C05 - Trees
    60G50 - Sums of independent random variables; random walks
    60J80 - Branching processes (Galton-Watson, birth-and-death, etc.)

    Ressources complémentaires :

    Informations sur la rencontre

    Nom de la rencontre : Random Trees and Graphs Summer School / École d'été GRaphes et Arbres ALéatoires
    Organisateurs de la rencontre : Albenque, Marie ; Bettinelli, Jérémie ; Ménard, Laurent ; Rué, Juanjo
    Dates : 01/07/2019 - 05/07/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/2075.html

    Citation Data

    DOI : 10.24350/CIRM.V.19541003
    Cite this video as: Kortchemski, Igor (2019). Condensation in random trees 1/3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19541003
    URI : http://dx.doi.org/10.24350/CIRM.V.19541003

    Voir aussi


    1. ABRAHAM, Romain, DELMAS, Jean-François, et al. Local limits of conditioned Galton-Watson trees: the condensation case. Electronic Journal of Probability, 2014, vol. 19. - http://emis.ams.org/journals/EJP-ECP/article/download/3164/3164-17754-1-PB.pdf

    2. ADDARIO‐BERRY, Louigi. Tail bounds for the height and width of a random tree with a given degree sequence. Random Structures & Algorithms, 2012, vol. 41, no 2, p. 253-261. - https://doi.org/10.1002/rsa.20438

    3. ADDARIO-BERRY, Louigi. A probabilistic approach to block sizes in random maps. arXiv preprint arXiv:1503.08159, 2015. - https://arxiv.org/abs/1503.08159

    4. ALBENQUE, Marie, MARCKERT, Jean-François, et al. Some families of increasing planar maps. Electronic journal of probability, 2008, vol. 13, p. 1624-1671. - http://emis.ams.org/journals/EJP-ECP/article/download/563/563-1832-1-PB.pdf

    5. ALDOUS, David. The continuum random tree. I. The Annals of Probability, 1991, p. 1-28. - https://www.jstor.org/stable/2244250

    6. ALDOUS, David. The continuum random tree II: an overview. Stochastic analysis, 1991, vol. 167, p. 23-70. -

    7. ALDOUS, David, et al. The continuum random tree III. The Annals of Probability, 1993, vol. 21, no 1, p. 248-289. - https://www.jstor.org/stable/2244761

    8. ARMENDÁRIZ, Inés et LOULAKIS, Michail. Conditional distribution of heavy tailed random variables on large deviations of their sum. Stochastic Processes and their Applications, 2011, vol. 121, no 5, p. 1138-1147. - https://doi.org/10.1016/j.spa.2011.01.011

    9. K. B. ATHREYA AND P. E. NEY, Branching processes, Springer-Verlag, New York, 1972. Die Grundlehren
      der mathematischen Wissenschaften, Band 196. -

    10. BACAËR, Nicolas. A short history of mathematical population dynamics. Springer Science & Business Media, 2011. -

    11. BENNIES, Jürgen et KERSTING, Götz. A random walk approach to Galton–Watson trees. Journal of Theoretical Probability, 2000, vol. 13, no 3, p. 777-803. - https://doi.org/10.1023/A:1007862612753

    12. BERGER, Quentin. Notes on random walks in the Cauchy domain of attraction. Probability Theory and Related Fields, 2017, p. 1-44. - https://doi.org/10.1007/s00440-018-0887-0

    13. BETTINELLI, Jérémie. Scaling limit of random planar quadrangulations with a boundary. In : Annales de l'IHP Probabilités et statistiques. 2015. p. 432-477. - https://doi.org/10.1214/13-AIHP581

    14. BIENAYMÉ, Irénée-Jules. De la loi de multiplication et de la durée des familles. Soc. Philomat. Paris Extraits, Sér, 1845, vol. 5, no 37-39, p. 4. - http://www.cs.xu.edu/math/Sources/Bienayme/trans%201845.pdf

    15. BINGHAM, Nicholas H., GOLDIE, Charles M., et TEUGELS, Jef L. Regular variation. Cambridge university press, 1989. -

    16. BROUTIN, Nicolas et MARCKERT, Jean‐François. Asymptotics of trees with a prescribed degree sequence and applications. Random Structures & Algorithms, 2014, vol. 44, no 3, p. 290-316. - https://doi.org/10.1002/rsa.20463

    17. CARACENI, Alessandra, et al. The scaling limit of random outerplanar maps. In : Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. Institut Henri Poincaré, 2016. p. 1667-1686. - http://dx.doi.org/10.1214/15-AIHP694

    18. CHEN, Xinxin, MIERMONT, Grégory, et al. Long Brownian bridges in hyperbolic spaces converge to Brownian trees. Electronic Journal of Probability, 2017, vol. 22. - http://dx.doi.org/10.1214/17-EJP68

    19. CURIEN, Nicolas, HAAS, Bénédicte, et KORTCHEMSKI, Igor. The CRT is the scaling limit of random dissections. Random Structures & Algorithms, 2015, vol. 47, no 2, p. 304-327. - https://doi.org/10.1002/rsa.20554

    20. CURIEN, Nicolas et KORTCHEMSKI, Igor. Random non‐crossing plane configurations: A conditioned Galton‐Watson tree approach. Random Structures & Algorithms, 2014, vol. 45, no 2, p. 236-260. - https://doi.org/10.1002/rsa.20481

    21. CURIEN, Nicolas et KORTCHEMSKI, Igor. Percolation on random triangulations and stable looptrees. Probability Theory and Related Fields, 2015, vol. 163, no 1-2, p. 303-337. - http://dx.doi.org/10.1007/s00440-014-0593-5

    22. DENISOV, Denis, DIEKER, Antonius Bernardus, SHNEER, Vsevolod, et al. Large deviations for random walks under subexponentiality: the big-jump domain. The Annals of Probability, 2008, vol. 36, no 5, p. 1946-1991. - http://dx.doi.org/10.1214/07-AOP382

    23. DONEY, R. A. A large deviation local limit theorem. In : Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1989. p. 575-577. - https://doi.org/10.1017/S030500410007794X

    24. DRMOTA, Michael. Random trees: an interplay between combinatorics and probability. Springer Science & Business Media, 2009. -

    25. DUQUESNE, Thomas, et al. A limit theorem for the contour process of condidtioned Galton--Watson trees. The Annals of Probability, 2003, vol. 31, no 2, p. 996-1027. - http://dx.doi.org/10.1214/aop/1048516543

    26. DUQUESNE, Thomas et LE GALL, Jean-François. Random trees, Lévy processes and spatial branching processes. Société mathématique de France, 2002. -

    27. DUQUESNE, Thomas et LE GALL, Jean-François. Probabilistic and fractal aspects of Lévy trees. Probability Theory and Related Fields, 2005, vol. 131, no 4, p. 553-603. - http://dx.doi.org/10.1007/s00440-004-0385-4

    28. EVANS, Steven N., PITMAN, Jim, et WINTER, Anita. Rayleigh processes, real trees, and root growth with re-grafting. Probability Theory and Related Fields, 2006, vol. 134, no 1, p. 81-126. - http://dx.doi.org/10.1007/s00440-004-0411-6

    29. FELLER, Willliam. An introduction to probability theory and its applications Vol II John Wiley & Sons, 2071. -

    30. FÉRAY, Valentin et KORTCHEMSKI, Igor. The geometry of random minimal factorizations of a long cycle via biconditioned bitype random trees. arXiv preprint arXiv:1712.06542, 2017. - https://arxiv.org/abs/1712.06542

    31. FUK, D. Kh et NAGAEV, Sergey V. Probability inequalities for sums of independent random variables. Theory of Probability & Its Applications, 1971, vol. 16, no 4, p. 643-660. - https://doi.org/10.1137/1116071

    32. GEIGER, Jochen et KERSTING, Götz. The Galton-Watson tree conditioned on its height. Probability Theory and Mathematical Statistics (Vilnius, 1998), 1999, p. 277-286. - https://www.uni-frankfurt.de/65701929/conheight.pdf

    33. GROMOV, Michael. Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits). Publications Mathématiques de l'IHÉS, 1981, vol. 53, p. 53-78. - http://www.numdam.org/item?id=PMIHES_1981__53__53_0

    34. HAAS, Bénédicte, MIERMONT, Grégory, et al. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. The Annals of Probability, 2012, vol. 40, no 6, p. 2589-2666. - http://dx.doi.org/10.1214/11-AOP686

    35. HARRIS, Theodore Edward. First passage and recurrence distributions. RAND CORP SANTA MONICA CA, 1951. - https://apps.dtic.mil/dtic/tr/fulltext/u2/603915.pdf

    36. HEYDE, Chris C. et SENETA, Eugene. Studies in the History of Probability and Statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality: A historical note on IJ Bienaymé. Biometrika, 1972, vol. 59, no 3, p. 680-683. - https://doi.org/10.1093/biomet/59.3.680

    37. JANSON, Svante, et al. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Probability Surveys, 2012, vol. 9, p. 103-252. - http://dx.doi.org/10.1214/11-PS188

    38. JANSON, Svante, STEFÁNSSON, Sigurdur Örn, et al. Scaling limits of random planar maps with a unique large face. The Annals of Probability, 2015, vol. 43, no 3, p. 1045-1081. - http://dx.doi.org/10.1214/13-AOP871

    39. JANSON, Svante, STEFÁNSSON, Sigurdur Örn, et al. Scaling limits of random planar maps with a unique large face. The Annals of Probability, 2015, vol. 43, no 3, p. 1045-1081. - http://dx.doi.org/10.1214/13-AOP871

    40. JONSSON, Thordur et STEFÁNSSON, Sigurdur Örn. Condensation in nongeneric trees. Journal of Statistical Physics, 2011, vol. 142, no 2, p. 277-313. - http://dx.doi.org/10.1007/s10955-010-0104-8

    41. KENDALL, David G. The genealogy of genealogy branching processes before (and after) 1873. Bulletin of the London Mathematical Society, 1975, vol. 7, no 3, p. 225-253. - https://doi.org/10.1112/blms/7.3.225

    42. KENNEDY, Douglas P. The Galton-Watson process conditioned on the total progeny. Journal of Applied Probability, 1975, vol. 12, no 4, p. 800-806. - https://doi.org/10.2307/3212730

    43. KESTEN, Harry. Subdiffusive behavior of random walk on a random cluster. In : Annales de l'IHP Probabilités et statistiques. 1986. p. 425-487. - http://www.numdam.org/item?id=AIHPB_1986__22_4_425_0

    44. KORTCHEMSKI, Igor. Invariance principles for Galton–Watson trees conditioned on the number of leaves. Stochastic Processes and Their Applications, 2012, vol. 122, no 9, p. 3126-3172. - https://doi.org/10.1016/j.spa.2012.05.013

    45. KORTCHEMSKI, Igor. Limit theorems for conditioned non-generic Galton–Watson trees. In : Annales de l'IHP Probabilités et statistiques. 2015. p. 489-511. - https://doi.org/10.1214/13-AIHP580

    46. KORTCHEMSKI, Igor, RICHIER, Loïc, et al. Condensation in critical Cauchy Bienaymé–Galton–Watson trees. The Annals of Applied Probability, 2019, vol. 29, no 3, p. 1837-1877. - http://dx.doi.org/10.1214/18-AAP1447

    47. KRIKUN, Maxim A. Uniform infinite planar triangulation and related time-reversed critical branching process. Journal of Mathematical Sciences, 2005, vol. 131, no 2, p. 5520-5537. - http://dx.doi.org/10.1007/s10958-005-0424-4

    48. GALL, Jean-François Le. Random geometry on the sphere. arXiv preprint arXiv:1403.7943, 2014. - https://arxiv.org/abs/1403.7943

    49. LE GALL, Jean-François, et al. Random trees and applications. Probability surveys, 2005, vol. 2, p. 245-311. - http://dx.doi.org/10.1214/154957805100000140

    50. LE GALL, Jean-François. Itô’s excursion theory and random trees. Stochastic Processes and Their Applications, 2010, vol. 120, no 5, p. 721-749. - https://doi.org/10.1016/j.spa.2010.01.015

    51. LE GALL, Jean-Francois, LE JAN, Yves, et al. Branching processes in Lévy processes: the exploration process. The Annals of Probability, 1998, vol. 26, no 1, p. 213-252. - http://dx.doi.org/10.1214/aop/1022855417

    52. LYONS, Russell, PEMANTLE, Robin, et PERES, Yuval. Conceptual proofs of L log L criteria for mean behavior of branching processes. The Annals of Probability, 1995, p. 1125-1138. - https://www.jstor.org/stable/2244865

    53. LYONS, Russell et PERES, Yuval. Probability on trees and networks. Cambridge University Press, 2017. -

    54. MILLER, Jason et SHEFFIELD, Scott. An axiomatic characterization of the Brownian map. arXiv preprint arXiv:1506.03806, 2015. - https://arxiv.org/abs/1506.03806

    55. NAGAEV, Sergey Victorovich. On the asymptotic behaviour of one-sided large deviation probabilities. Teoriya Veroyatnostei i ee Primeneniya, 1981, vol. 26, no 2, p. 369-372. - http://dx.doi.org/10.1137/1126035%7D

    56. PANAGIOTOU, Konstantinos et STUFLER, Benedikt. Scaling limits of random Pólya trees. Probability Theory and Related Fields, 2018, vol. 170, no 3-4, p. 801-820.https://arxiv.org/abs/1808.08140 - http://dx.doi.org/10.1007/s00440-017-0770-4

    57. WELLER, Kerstin, STUFLER, Benedikt, et PANAGIOTOU, Konstantinos. Scaling Limits of Random Graphs from Subcritical Classes. Discrete Mathematics & Theoretical Computer Science, 2015. - https://arxiv.org/abs/1411.1865

    58. PAULIN, Frédéric. The Gromov topology on R-trees. Topology and its Applications, 1989, vol. 32, no 3, p. 197-221. - https://doi.org/10.1016/0166-8641(89)90029-1

    59. PITMAN, Jim et RIZZOLO, Douglas. Schröder’s problems and scaling limits of random trees. Transactions of the American Mathematical Society, 2015, vol. 367, no 10, p. 6943-6969. - http://dx.doi.org/10.1090/S0002-9947-2015-06254-0

    60. RAMZEWS, Leon et STUFLER, Benedikt. Simply Generated Unrooted Plane Trees. arXiv preprint arXiv:1808.08140, 2018. - https://arxiv.org/abs/1808.08140

    61. RICHIER, Loïc. Limits of the boundary of random planar maps. Probability Theory and Related Fields, 2018, vol. 172, no 3-4, p. 789-827. - http://dx.doi.org/10.1007/s00440-017-0820-y

    62. RIZZOLO, Douglas. Scaling limits of Markov branching trees and Galton–Watson trees conditioned on the number of vertices with out-degree in a given set. In : Annales de l'IHP Probabilités et statistiques. 2015. p. 512-532. - https://doi.org/10.1214/13-AIHP594

    63. STEFÁNSSON, Sigurdur Örn et STUFLER, Benedikt. Geometry of large Boltzmann outerplanar maps. Random Structures & Algorithms, 2017. - https://doi.org/10.1002/rsa.20834

    64. STEFFENSEN, Johan Frederik. Om sandsynligheden for at afkommet uddør. Matematisk tidsskrift. B, 1930, p. 19-23. - https://www.jstor.org/stable/24529732

    65. STUFLER, Benedikt. Limits of random tree-like discrete structures. arXiv preprint arXiv:1612.02580, 2016. - https://arxiv.org/abs/1612.02580

    66. STUFLER, Benedikt, et al. Scaling limits of random outerplanar maps with independent link-weights. In : Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. Institut Henri Poincaré, 2017. p. 900-915. - http://dx.doi.org/10.1214/16-AIHP741

    67. WATSON, Henry William et GALTON, Francis. On the probability of the extinction of families. The Journal of the Anthropological Institute of Great Britain and Ireland, 1875, vol. 4, p. 138-144. - http://dx.doi.org/10.2307/2841222