Auteurs : Rhandi, Abdelaziz (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
In this talk we study for $p\in \left ( 1,\infty \right )$ the $L^{p}$-realization of the vector-valued Schrödinger operator $\mathcal{L}u:= div\left ( Q\triangledown u \right )+Vu$. Using a noncommutative version of the Dore–Venni theorem due to Monniaux and Prüss, and a perturbation theorem by Okazawa, we prove that $L^{p}$, the $L^{p}$-realization of $\mathcal{L}$, defined on the intersection of the natural domains of the differential and multiplication operators which form $\mathcal{L}$, generates a strongly continuous contraction semigroup on $L^{p}\left ( \mathbb{R}^{d} ;\mathbb{C}^{m}\right )$. We also study additional properties of the semigroup such as positivity, ultracontractivity, Gaussian estimates and compactness of the resolvent. We end the talk by giving some generalizations obtained recently and several examples.
Keywords : system of PDE; Schrödinger operator; strongly continuous semigroup
Codes MSC :
35J15
- General theory of second-order, elliptic equations
47D06
- One-parameter semigroups and linear evolution equations
47D08
- Schrödinger and Feynman-Kac semigroups
35J47
- Second-order elliptic systems
|
Informations sur la Rencontre
Nom de la rencontre : Evolution Equations: Applied and Abstract Perspectives / Equations d'évolution: perspectives appliquées et abstraites Organisateurs de la rencontre : Disser, Karoline ; Haller-Dintelmann, Robert ; Kyed, Mads ; Saal, Jürgen Dates : 28/10/2019 - 01/11/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/2071.html
DOI : 10.24350/CIRM.V.19576003
Citer cette vidéo:
Rhandi, Abdelaziz (2019). $L^p$-theory for Schrödinger systems . CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19576003
URI : http://dx.doi.org/10.24350/CIRM.V.19576003
|
Voir aussi
Bibliographie
- KUNZE, Markus, LORENZI, Luca, MAICHINE, Abdallah, et al. ${L^ p} $-theory for Schr\" odinger systems. arXiv preprint arXiv:1705.03333, 2017. - https://arxiv.org/abs/1705.03333
- HIEBER, Matthias, LORENZI, Luca, PRÜSS, Jan, et al. Global properties of generalized Ornstein–Uhlenbeck operators on Lp (RN, RN) with more than linearly growing coefficients. Journal of Mathematical Analysis and Applications, 2009, vol. 350, no 1, p. 100-121. - http://dx.doi.org/10.1016/j.jmaa.2008.09.011
- KUNZE, M., LORENZI, L., MAICHINE, A., et al. Lp-theory for Schrödinger systems, Math. Nachr, vol. 292 n°8 p1763-1776 - https://doi.org/10.1002/mana.201800206
- KUNZE, Markus, MAICHINE, Abdallah, et RHANDI, Abdelaziz. Vector-valued Schr\" odinger operators on $ L^ p $-spaces. arXiv preprint arXiv:1802.09771, 2018. - https://arxiv.org/pdf/1802.09771.pdf
- MAICHINE, Abdallah et RHANDI, Abdelaziz. On a polynomial scalar perturbation of a Schrödinger system in Lp-spaces. Journal of Mathematical Analysis and Applications, 2018, vol. 466, no 1, p. 655-675. - https://arxiv.org/pdf/1802.02772.pdf