En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$L^p$-theory for Schrödinger systems

Sélection Signaler une erreur
Multi angle
Auteurs : Rhandi, Abdelaziz (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this talk we study for $p\in \left ( 1,\infty \right )$ the $L^{p}$-realization of the vector-valued Schrödinger operator $\mathcal{L}u:= div\left ( Q\triangledown u \right )+Vu$. Using a noncommutative version of the Dore–Venni theorem due to Monniaux and Prüss, and a perturbation theorem by Okazawa, we prove that $L^{p}$, the $L^{p}$-realization of $\mathcal{L}$, defined on the intersection of the natural domains of the differential and multiplication operators which form $\mathcal{L}$, generates a strongly continuous contraction semigroup on $L^{p}\left ( \mathbb{R}^{d} ;\mathbb{C}^{m}\right )$. We also study additional properties of the semigroup such as positivity, ultracontractivity, Gaussian estimates and compactness of the resolvent. We end the talk by giving some generalizations obtained recently and several examples.

Keywords : system of PDE; Schrödinger operator; strongly continuous semigroup

Codes MSC :
35J15 - General theory of second-order, elliptic equations
47D06 - One-parameter semigroups and linear evolution equations
47D08 - Schrödinger and Feynman-Kac semigroups
35J47 - Second-order elliptic systems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 29/11/2019
    Date de captation : 28/10/2019
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Durée : 00:28:42
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-10-31_Rhandi.mp4

Informations sur la Rencontre

Nom de la rencontre : Evolution Equations: Applied and Abstract Perspectives / Equations d'évolution: perspectives appliquées et abstraites
Organisateurs de la rencontre : Disser, Karoline ; Haller-Dintelmann, Robert ; Kyed, Mads ; Saal, Jürgen
Dates : 28/10/2019 - 01/11/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/2071.html

Données de citation

DOI : 10.24350/CIRM.V.19576003
Citer cette vidéo: Rhandi, Abdelaziz (2019). $L^p$-theory for Schrödinger systems . CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19576003
URI : http://dx.doi.org/10.24350/CIRM.V.19576003

Voir aussi

Bibliographie

  • KUNZE, Markus, LORENZI, Luca, MAICHINE, Abdallah, et al. ${L^ p} $-theory for Schr\" odinger systems. arXiv preprint arXiv:1705.03333, 2017. - https://arxiv.org/abs/1705.03333

  • HIEBER, Matthias, LORENZI, Luca, PRÜSS, Jan, et al. Global properties of generalized Ornstein–Uhlenbeck operators on Lp (RN, RN) with more than linearly growing coefficients. Journal of Mathematical Analysis and Applications, 2009, vol. 350, no 1, p. 100-121. - http://dx.doi.org/10.1016/j.jmaa.2008.09.011

  • KUNZE, M., LORENZI, L., MAICHINE, A., et al. Lp-theory for Schrödinger systems, Math. Nachr, vol. 292 n°8 p1763-1776 - https://doi.org/10.1002/mana.201800206

  • KUNZE, Markus, MAICHINE, Abdallah, et RHANDI, Abdelaziz. Vector-valued Schr\" odinger operators on $ L^ p $-spaces. arXiv preprint arXiv:1802.09771, 2018. - https://arxiv.org/pdf/1802.09771.pdf

  • MAICHINE, Abdallah et RHANDI, Abdelaziz. On a polynomial scalar perturbation of a Schrödinger system in Lp-spaces. Journal of Mathematical Analysis and Applications, 2018, vol. 466, no 1, p. 655-675. - https://arxiv.org/pdf/1802.02772.pdf



Sélection Signaler une erreur