Auteurs : Rider, Brian (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Random matrix theory is an asymptotic spectral theory. For a given ensemble of $n$ by $n$ matrices, one aims to proves limit theorems for the eigenvalues as the dimension tends to infinity. One of the more remarkable aspects of the subject is that it has introduced important new points of concentration in the space of distributions. Take for example the Tracy-Widom laws. First discovered as the fluctuation limit for the spectral radius of certain Gaussian Hermitian matrices, these laws are now understood to govern the behavior of a wide range of nonlinear phenomena in mathematical physics (exclusion processes, random growth models, etc.)
My aim here will be to describe a relatively new approach to limit theorems for random matrices. Instead of focussing on some particular spectral statistic, one rather understands the large dimensional limit as a continuum limit, demonstrating that the matrices themselves converge to some random differential operators. This method is especially suited to the so-called beta ensembles, which generalize the classical Gaussian Unitary and Orthogonal Ensembles (GUE/GOE), and can be viewed in their own right as models of coulomb gases.
The first lecture will review the underlying analytic structure of the just mentioned classical ensembles (essential to, for example, Tracy and Widom's original work), and then introduce the beta ensembles along with our main players: the stochastic Airy, Bessel, and Sine operators. These operators provide complete characterizations of the general edge and bulk statistics for the beta-ensembles and as such generalize all previously discovered limit theorems for say GUE/GOE. Lecture two will provide the rigorous framework for these operators, as well as an overview of the proofs of the implied operator convergence. The last lectures will be devoted to upshots and applications of these new characterizations of random matrix limits: tail estimates for general beta Tracy-Widom, a simple PDE description of ``the Baik-Ben Arous-Peche phase transition", approaches to universality, and so on.
Codes MSC :
60H25
- Random operators and equations
15B52
- Random matrices
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2105/Slides/Rider_Lecture1-4.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Jean-Morlet chair - Research school: Coulomb gas, integrability and Painlevé equations / Chaire Jean-Morlet - École de recherche : Gaz de Coulomb, intégrabilité et équations de Painlevé Organisateurs de la rencontre : Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara Dates : 11/03/2019 - 15/03/2019
Année de la rencontre : 2019
URL Congrès : https://www.chairejeanmorlet.com/2105.html
DOI : 10.24350/CIRM.V.19504203
Citer cette vidéo:
Rider, Brian (2019). Operator limits of beta ensembles - Lecture 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19504203
URI : http://dx.doi.org/10.24350/CIRM.V.19504203
|
Voir aussi
-
[Multi angle]
Operator limits of beta ensembles - Lecture 4
/ Auteur de la Conférence Rider, Brian.
-
[Multi angle]
Random matrices, integrability, and number theory - Lecture 4
/ Auteur de la Conférence Keating, Jonathan P..
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part II: a Riemann-Hilbert point of view - Lecture 2
/ Auteur de la Conférence Its, Alexander R..
-
[Multi angle]
Operator limits of beta ensembles - Lecture 2
/ Auteur de la Conférence Rider, Brian.
-
[Multi angle]
Operator limits of beta ensembles - Lecture 1
/ Auteur de la Conférence Rider, Brian.
-
[Multi angle]
Random matrices, integrability, and number theory - Lecture 3
/ Auteur de la Conférence Keating, Jonathan P..
-
[Multi angle]
Random matrices, integrability, and number theory - Lecture 2
/ Auteur de la Conférence Keating, Jonathan P..
-
[Multi angle]
Random matrices, integrability, and number theory - Lecture 1
/ Auteur de la Conférence Keating, Jonathan P..
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part II: a Riemann-Hilbert point of view - Lecture 3
/ Auteur de la Conférence Its, Alexander R..
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part II: a Riemann-Hilbert point of view - Lecture 1
/ Auteur de la Conférence Its, Alexander R..
-
[Multi angle]
Correlation functions for some integrable systems with random initial data, theory and computation - Lecture 2
/ Auteur de la Conférence McLaughlin, Kenneth D. T.-R..
-
[Multi angle]
Correlation functions for some integrable systems with random initial data, theory and computation - Lecture 1
/ Auteur de la Conférence Grava, Tamara.
-
[Multi angle]
Determinantal point processes - Lecture 3
/ Auteur de la Conférence Bufetov, Alexander.
-
[Multi angle]
Determinantal point processes - Lecture 2
/ Auteur de la Conférence Bufetov, Alexander.
-
[Multi angle]
Determinantal point processes - Lecture 1
/ Auteur de la Conférence Bufetov, Alexander.
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part I: an operator approach - Lecture 3
/ Auteur de la Conférence Basor, Estelle.
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part I: an operator approach - Lecture 2
/ Auteur de la Conférence Basor, Estelle.
-
[Multi angle]
Toeplitz determinants, Painlevé equations, and special functions. Part I: an operator approach - Lecture 1
/ Auteur de la Conférence Basor, Estelle.
Bibliographie