Auteurs : Soroko, Ignat (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The famous Hanna Neumann Conjecture (now the Friedman--Mineyev theorem) gives an upper bound for the ranks of the intersection of arbitrary subgroups H and K of a non-abelian free group. It is an interesting question to 'quantify' this bound with respect to the rank of the join of H and K, the subgroup generated by H and K. In this talk I describe what is known about the set of realizable values (rank of join, rank of intersection) for arbitrary H, K, and about my recent results in this direction. In particular, we resolve the remaining open case (m=4) of Guzman's `Group-Theoretic Conjecture' in the affirmative. This has some interesting corollaries for the geometry of hyperbolic 3-manifolds. Our methods rely on recasting the topological pushout of core graphs in terms of the Dicks graphs introduced in the context of his Amalgamated Graph Conjecture. This allows to translate the question of existence of a pair of subgroups H,K with prescribed ranks of joins and intersections into graph theoretic language, and completely resolve it in some cases. In particular, we completely describe the locus of realizable values of ranks in the case when the rank of one of the subgroups H,K equals two.
Keywords : Hanna Neumann conjecture; rank of the join; topological pushout
Codes MSC :
20E05
- Free nonabelian groups
20E07
- Subgroup theorems
20F65
- Geometric group theory
57M07
- Topological methods in group theory
Ressources complémentaires :
https://conferences.cirm-math.fr/uploads/1/6/6/4/16648158/presentation_france.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Virtual Geometric Group Theory conference / Rencontre virtuelle en géométrie des groupes Organisateurs de la rencontre : Chatterji, Indira ; Paris, Luis ; Vogtmann, Karen Dates : 01/06/2020 - 05/06/2020
Année de la rencontre : 2020
URL Congrès : https://conferences.cirm-math.fr/virtual...
DOI : 10.24350/CIRM.V.19636903
Citer cette vidéo:
Soroko, Ignat (2020). Intersections and joins of subgroups in free groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19636903
URI : http://dx.doi.org/10.24350/CIRM.V.19636903
|
Voir aussi
-
[Virtualconference]
Automorphism groups of Coxeter groups do not have Kazhdan's property (T)
/ Auteur de la Conférence Varghese, Olga.
-
[Virtualconference]
Action rigidity for free products of hyperbolic manifold groups
/ Auteur de la Conférence Stark, Emily.
-
[Virtualconference]
Effectively generating RAAGs in MCGs
/ Auteur de la Conférence Runnels, Ian.
-
[Virtualconference]
Parabolic subgroups of infinite type Artin groups
/ Auteur de la Conférence Morris-Wright, Rose.
-
[Virtualconference]
Quasi-actions and almost normal subgroups
/ Auteur de la Conférence Margolis, Alex.
-
[Virtualconference]
Action of the Cremona group on a CAT(0) cube complex
/ Auteur de la Conférence Lonjou, Anne.
-
[Virtualconference]
Right-angled Coxeter groups commensurable to right-angled Artin groups
/ Auteur de la Conférence Levcovitz, Ivan.
-
[Virtualconference]
Computing fibring of 3-manifolds and free-by-cyclic groups
/ Auteur de la Conférence Kielak, Dawid.
-
[Virtualconference]
Shortcut graphs and groups
/ Auteur de la Conférence Hoda, Nima.
-
[Virtualconference]
Spin mapping class groups and curve graphs
/ Auteur de la Conférence Hamenstädt, Ursula.
-
[Virtualconference]
Spaces of cubulations
/ Auteur de la Conférence Fioravanti, Elia.
-
[Virtualconference]
Complexes of parabolic subgroups for Artin groups
/ Auteur de la Conférence Cumplido Cabello, Maria.
-
[Virtualconference]
Quasi-parabolic structures on groups
/ Auteur de la Conférence Balasubramanya, Sahana.
Bibliographie
- AGOL, Ian, CULLER, Marc, et SHALEN, Peter. Singular surfaces, mod 2 homology, and hyperbolic volume, I. Transactions of the American Mathematical Society, 2010, vol. 362, no 7, p. 3463-3498. - https://doi.org/10.1090/S0002-9947-10-04362-X
- CULLER, Marc et SHALEN, Peter B. 4‐free groups and hyperbolic geometry. Journal of Topology, 2012, vol. 5, no 1, p. 81-136. - https://doi.org/10.1112/jtopol/jtr028
- DICKS, Warren. Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture. Inventiones mathematicae, 1994, vol. 117, no 1, p. 373-389. - https://doi.org/10.1007/BF01232249
- GUZMAN, Rosemary K. Hyperbolic 3-manifolds with k-free fundamental group. Topology and its Applications, 2014, vol. 173, p. 142-156. - https://doi.org/10.1016/j.topol.2014.05.018
- GUZMAN, Rosemary K. et SHALEN, Peter B. The geometry of k-free hyperbolic 3-manifolds. Journal of Topology and Analysis, 2019, p. 1-18. - https://doi.org/10.1142/S1793525320500016
- HUNT, Joshua E. The Hanna Neumann Conjecture and the rank of the join. arXiv preprint arXiv:1509.04449, 2015.
- https://arxiv.org/abs/1509.04449 - IMRICH, Wilfried et MÜLLER, Thomas. On Howson's theorem. Archiv der Mathematik, 1994, vol. 62, no 3, p. 193-198. - https://doi.org/10.1007/BF01261357
- IVANOV, Sergei V. On a conjecture of Imrich and Müller. Journal of Group Theory, 2017, vol. 20, no 4, p. 823-828. - https://doi.org/10.1515/jgth-2016-0056
- IVANOV, Sergei V. On joins and intersections of subgroups in free groups. J. Comb. Algebra 2 (2018), 1--18. - https://doi.org/10.4171/JCA/2-1-1
- KENT, I. V. et RICHARD, P. Achievable ranks of intersections of finitely generated free groups. Internat. J. Algebra Comput. 15 (2005), no. 2, 339--341. - https://arxiv.org/abs/math/0401266https://doi.org/10.1142/S0218196705002207
- KENT, I. V. et RICHARD, P. Intersections and joins of free groups. Algebr. Geom. Topol. 9 (2009), no. 1, 305--325. - http://dx.doi.org/10.2140/agt.2009.9.305
- LOUDER, Larsen et MCREYNOLDS, D. B. Graphs of subgroups of free groups. Algebraic & Geometric Topology, 2009, vol. 9, no 1, p. 327-335. - http://dx.doi.org/10.2140/agt.2009.9.327
- SOROKO, Ignat. Realizable ranks of joins and intersections of subgroups in free groups. Internat. J. Algebra Comput., Vol. 30, No. 03 (2020), pp. 625--666. - https://doi.org/10.1142/S0218196720500149