En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    A model-theoretic analysis of geodesic equations in negative curvature

    Sélection Signaler une erreur
    Virtualconference
    Auteurs : Jaoui, Rémi (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : To any algebraic differential equation, one can associate a first-order structure which encodes some of the properties of algebraic integrability and of algebraic independence of its solutions.To describe the structure associated to a given algebraic (nonlinear) differential equation (E), typical questions are:- Is it possible to express the general solutions of (E) from successive resolutions of linear differential equations?- Is it possible to express the general solutions of (E) from successive resolutions of algebraic differential equations of lower order than (E)?- Given distinct initial conditions for (E), under which conditions are the solutions associated to these initial conditions algebraically independent?In my talk, I will discuss in this setting one of the first examples of non-completely integrable Hamiltonian systems: the geodesic motion on an algebraically presented compact Riemannian surface with negative curvature. I will explain a qualitative model-theoretic description of the associated structure based on the global hyperbolic dynamical properties identified by Anosov in the 70's for the geodesic motion in negative curvature.

    Codes MSC :
    12H05 - Differential algebra
    37D40 - Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
    53C22 - Geodesics [See also 58E10]
    53D25 - Geodesic flows

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 05/06/2020
      Date de captation : 25/05/2020
      Sous collection : Research School
      arXiv category : Logic ; Dynamical Systems
      Domaine : Dynamical Systems & ODE ; Logic and Foundations
      Format : MP4 (.mp4) - HD
      Durée : 00:34:33
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2020-05-25_Jaoui.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages
    Organisateurs de la rencontre : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan
    Dates : 18/05/2020 - 22/05/2020
    Année de la rencontre : 2020
    URL Congrès : https://www.chairejeanmorlet.com/2251.html

    Données de citation

    DOI : 10.24350/CIRM.V.19638203
    Citer cette vidéo: Jaoui, Rémi (2020). A model-theoretic analysis of geodesic equations in negative curvature. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19638203
    URI : http://dx.doi.org/10.24350/CIRM.V.19638203

    Voir aussi

    Bibliographie



    Imagette Video

    Sélection Signaler une erreur
    Close