En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The smoothed multivariate square-root Lasso: an optimization lens on concomitant estimation

Sélection Signaler une erreur
Virtualconference
Auteurs : Salmon, Joseph (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level. The canonical pivotal estimator is the square-root Lasso, formulated along with its derivatives as a "non-smooth + non-smooth'' optimization problem.
Modern techniques to solve these include smoothing the datafitting term, to benefit from fast efficient proximal algorithms.
In this work we focus on minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators. We also provide some guidelines on how to set the smoothing hyperparameter, and illustrate on synthetic data the interest of such guidelines.
This is joint work with Quentin Bertrand (INRIA), Mathurin Massias, Olivier Fercoq and Alexandre Gramfort.

Keywords : Multi-task regression; neuro-imaging; smoothing; non smooth optimization; square-root lasso; concomitant estimation

Codes MSC :
62J05 - Linear regression
62J12 - Generalized linear models
62P10 - Applications of statistics to biology and medical sciences

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2146/Slides/joseph_salmon.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 15/06/2020
    Date de captation : 04/06/2020
    Sous collection : Research talks
    arXiv category : Optimization and Control ; Machine Learning
    Domaine : Probability & Statistics ; Control Theory & Optimization
    Format : MP4 (.mp4) - HD
    Durée : 00:50:05
    Audience : Researchers
    Download : https://videos.cirm-math.fr/ 2020-06-04_Salmon.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL Congrès : https://www.cirm-math.com/cirm-virtual-...

Données de citation

DOI : 10.24350/CIRM.V.19643003
Citer cette vidéo: Salmon, Joseph (2020). The smoothed multivariate square-root Lasso: an optimization lens on concomitant estimation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19643003
URI : http://dx.doi.org/10.24350/CIRM.V.19643003

Voir aussi

Bibliographie

  • BECK, Amir et TEBOULLE, Marc. Smoothing and first order methods: A unified framework. SIAM Journal on Optimization, 2012, vol. 22, no 2, p. 557-580. - https://doi.org/10.1137/100818327

  • BELLONI, Alexandre, CHERNOZHUKOV, Victor, et WANG, Lie. Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 2011, vol. 98, no 4, p. 791-806. - https://www.jstor.org/stable/23076172

  • BERTRAND, Quentin, MASSIAS, Mathurin, GRAMFORT, Alexandre, et al. Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso. In : Advances in Neural Information Processing Systems. 2019. p. 3961-3972. - https://arxiv.org/abs/1902.02509

  • BICKEL, Peter J., RITOV, Ya'acov, TSYBAKOV, Alexandre B., et al. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 2009, vol. 37, no 4, p. 1705-1732. - http://dx.doi.org/10.1214/08-AOS620

  • CANDES, E.J., WAKIN, M.B. & BOYD, S.P. Enhancing Sparsity by Reweighted ℓ 1 Minimization. J Fourier Anal Appl 14, 877–905 (2008). - https://doi.org/10.1007/s00041-008-9045-x

  • CHEN, Scott S. et DONOHO, David L. andM. A. Saunders," Atomic decomposition by basis pursuit,". SIAM J. Sci. Comput, 1999, vol. 20, no 1, p. 33-61. - https://doi.org/10.1137/S1064827596304010

  • DALALYAN, Arnak S., HEBIRI, Mohamed, LEDERER, Johannes, et al. On the prediction performance of the lasso. Bernoulli, 2017, vol. 23, no 1, p. 552-581. - http://dx.doi.org/10.3150/15-BEJ756

  • DAUBECHIES, Ingrid. CBMS-NSF regional conference series in applied mathematics. Ten lectures on wavelets, 1992, vol. 61. - https://doi.org/10.1137/1.9781611970104

  • DELORME, Arnaud, PALMER, Jason, ONTON, Julie, et al. Independent EEG sources are dipolar. PloS one, 2012, vol. 7, no 2. - http://dx.doi.org/10.1371/journal.pone.0030135

  • MASSIAS, Mathurin, FERCOQ, Olivier, GRAMFORT, Alexandre, et al. Generalized concomitant multi-task lasso for sparse multimodal regression. In: AISTATS. Vol. 84. 2018, p. 998-1007.
    - http://proceedings.mlr.press/v84/massias18a/massias18a.pdf

  • MASSIAS, Mathurin, BERTRAND, Quentin, GRAMFORT, Alexandre, et al. Support recovery and sup-norm convergence rates for sparse pivotal estimation. In: AISTATS. 2020. - https://arxiv.org/abs/2001.05401

  • NDIAYE, Eugene, FERCOQ, Olivier, GRAMFORT, Alexandre, et al. Efficient smoothed concomitant Lasso estimation for high dimensional regression. In : Journal of Physics: Conference Series. IOP Publishing, 2017. p. 012006. - https://doi.org/10.1088/1742-6596/904/1/012006

  • NESTEROV, Yu. Smooth minimization of non-smooth functions. Mathematical programming, 2005, vol. 103, no 1, p. 127-152. - https://doi.org/10.1007/s10107-004-0552-5

  • OBOZINSKI, Guillaume, TASKAR, Ben, et JORDAN, Michael I. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 2010, vol. 20, no 2, p. 231-252. - https://doi.org/10.1007/s11222-008-9111-x

  • OLSHAUSEN, Bruno A. et FIELD, David J. Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision research, 1997, vol. 37, no 23, p. 3311-3325. - https://doi.org/10.1016/S0042-6989(97)00169-7

  • OWEN, A. B. A robust hybrid of lasso and ridge regression. In: Contemporary Mathematics 2007, vol. 443, p. 59–72. - http://dx.doi.org/10.1090/conm/443

  • TIBSHIRANI, Robert. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996, vol. 58, no 1, p. 267-288. - https://www.jstor.org/stable/2346178

  • VAN DE GEER, Sara. Estimation and testing under sparsity. Lecture notes in mathematics, 2016, vol. 2159. - http://dx.doi.org/10.1007/978-3-319-32774-7



Sélection Signaler une erreur